The Role of Mitochondrial Dysfunction in Alzheimer's: Molecular Defects and Mitophagy-Enhancing Approaches.

Life (Basel)

Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21462, Saudi Arabia.

Published: April 2023

Alzheimer's disease (AD), a progressive and chronic neurodegenerative syndrome, is categorized by cognitive and memory damage caused by the aggregations of abnormal proteins, specifically including Tau proteins and β-amyloid in brain tissue. Moreover, mitochondrial dysfunctions are the principal causes of AD, which is associated with mitophagy impairment. Investigations exploring pharmacological therapies alongside AD have explicitly concentrated on molecules accomplished in preventing/abolishing the gatherings of the abovementioned proteins and mitochondria damages. Mitophagy is the removal of dead mitochondria by the autophagy process. Damages in mitophagy, the manner of diversified mitochondrial degeneracy by autophagy resulting in an ongoing aggregation of malfunctioning mitochondria, were also suggested to support AD. Recently, plentiful reports have suggested a link between defective mitophagy and AD. This treaty highlights updated outlines of modern innovations and developments on mitophagy machinery dysfunctions in AD brains. Moreover, therapeutic and nanotherapeutic strategies targeting mitochondrial dysfunction are also presented in this review. Based on the significant role of diminished mitophagy in AD, we suggest that the application of different therapeutic approaches aimed at stimulating mitophagy in AD would be beneficial for targeting or reducing the mitochondrial dysfunction induced by AD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10142261PMC
http://dx.doi.org/10.3390/life13040970DOI Listing

Publication Analysis

Top Keywords

mitochondrial dysfunction
12
damages mitophagy
8
mitophagy
7
role mitochondrial
4
dysfunction alzheimer's
4
alzheimer's molecular
4
molecular defects
4
defects mitophagy-enhancing
4
mitophagy-enhancing approaches
4
approaches alzheimer's
4

Similar Publications

A predictive model for long-term survival is needed, and mitochondrial dysfunction is a key feature of cancer metabolism, though its link to glioma is not well understood. The aim of this study was to identify the molecular characteristics associated with glioma prognosis and explore its potential function. We analyzed RNA-seq data from The Cancer Genome Atlas and identified differentially expressed mitochondrial long noncoding RNAs (lncRNAs) using R's 'limma' package.

View Article and Find Full Text PDF

Neuroinflammation and mitochondrial dysfunction are early events in Alzheimer's disease (AD) and contribute to neurodegeneration and cognitive impairment. Evidence suggests that the inflammatory axis mediated by macrophage migration inhibitory factor (MIF) binding to its receptor, CD74, plays an important role in many central nervous system (CNS) disorders such as AD. Our group has developed DRhQ, a novel CD74 binding construct which competitively inhibits MIF binding, blocks macrophage activation and migration into the CNS, enhances anti-inflammatory microglia cell numbers and reduces pro-inflammatory gene expression.

View Article and Find Full Text PDF

Historically, Friedreich's Ataxia (FRDA) has been linked to a relatively preserved cerebellar cortex. Recent advances in neuroimaging have revealed altered cerebello-cerebral functional connectivity (FC), but the extent of intra-cerebellar FC changes and their impact on cognition remains unclear. This study investigates intra-cerebellar FC alterations and their cognitive implications in FRDA.

View Article and Find Full Text PDF

Mitochondria represent pivotal cellular organelles endowed with multifaceted functionalities encompassing cellular respiration, metabolic processes, calcium turnover, and the regulation of apoptosis, primarily through the generation of reactive oxygen species (ROS). Perturbations in mitochondrial dynamics have been intricately linked to the etiology of numerous cardiovascular pathologies, such as heart failure, ischemic heart disease, and various cardiomyopathies. Notably, recent attention has been directed towards the detrimental impact of micro- and nanoplastic pollution on mitochondrial integrity, an area underscored by a paucity of comprehensive investigations.

View Article and Find Full Text PDF

Unveiling Microscopic Variations during Photodynamic Therapy via Polarity-Responsive Fluorescence Lifetime Imaging.

Anal Chem

January 2025

Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China.

Photodynamic therapy is a highly promising method for cancer adjuvant treatment. However, the current research on the microscopic changes during the photodynamic therapy process is still quite limited, which seriously impedes the deep understanding of the procedure. For this purpose, a novel polarity-responsive probe, , with excellent mitochondrial targeting and anchoring capabilities has been rationally designed and synthesized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!