Patients diagnosed with exudative neovascular age-related macular degeneration are commonly treated with anti-vascular endothelial growth factor (anti-VEGF) agents. However, response to treatment is heterogeneous, without a clinical explanation. Predicting suboptimal response at baseline will enable more efficient clinical trial designs for novel, future interventions and facilitate individualised therapies. In this multicentre study, we trained a multi-modal artificial intelligence (AI) system to identify suboptimal responders to the loading-phase of the anti-VEGF agent aflibercept from baseline characteristics. We collected clinical features and optical coherence tomography scans from 1720 eyes of 1612 patients between 2019 and 2021. We evaluated our AI system as a patient selection method by emulating hypothetical clinical trials of different sizes based on our test set. Our method detected up to 57.6% more suboptimal responders than random selection, and up to 24.2% more than any alternative selection criteria tested. Applying this method to the entry process of candidates into randomised controlled trials may contribute to the success of such trials and further inform personalised care.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10142969 | PMC |
http://dx.doi.org/10.3390/jcm12083013 | DOI Listing |
Angiogenesis
January 2025
Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing Advanced Center of Cellular Homeostasis and Aging-Related Diseases, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing, 100191, China.
Angiogenesis describes the sprouting of blood vessels from existing vasculatures and it plays a pivotal role in disease progress such as diabetes, age-related macular degeneration and cancer. However, the most widely used anti-angiogenic agents targeting vascular endothelial growth factor (VEGF) pathway still lacked of specificity and therapeutic efficacy. To establish a method suitable for high-throughput drug screening and faithfully recapitulate the feature of in vivo angiogenesis, we generated a PECAM1-mRuby3-secNluc; ACTA2-EGFP dual reporter human pluripotent stem cell (hPSC) line and utilizing the cell line to establish a visualized and quantifiable in vitro angiogenesis model with stem cell-derived vascular organoid.
View Article and Find Full Text PDFDrug Deliv Transl Res
January 2025
Pharmaceutical Research and Development, Ezequiel Dias Foundation, Rua Conde Pereira Carneiro 80, Gameleira, Belo Horizonte, CEP 30510-010, Minas Gerais, Brazil.
Current treatments for retinal disorders are anti-angiogenic agents, laser photocoagulation, and photodynamic therapies. These conventional treatments focus on reducing abnormal blood vessel formation in the retina, which, in a low-oxygen environment, can lead to harmful proliferation of endothelial cells. This results in dysfunctional, leaky blood vessels that cause retinal edema, hemorrhage, and vision loss.
View Article and Find Full Text PDFClin Ophthalmol
December 2024
University Eye Hospital, Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany.
Purpose: To evaluate visual and anatomical outcome of consecutive patients who received intravitreal injections (IVI) of faricimab for the treatment of neovascular age-related macular degeneration (nAMD).
Patients And Methods: A retrospective study of patients treated for nAMD with one to three IVIs of faricimab from October 2022 to January 2024. Demographic data, treatment history, best corrected visual acuity (BCVA), anatomic parameters, and adverse events (AEs) were collected.
Aging Cell
January 2025
Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
Neovascular age-related macular degeneration (nAMD), characterized by choroidal neovascularization (CNV), is one of the leading causes of severe visual impairment and irreversible vision loss around the world. Subretinal fibrosis (SRF) contributes to the incomplete response to anti-vascular endothelial growth factor (VEGF) treatment and is one of the main reasons for long-term poor visual outcomes in nAMD. Reducing SRF is urgently needed in the anti-VEGF era.
View Article and Find Full Text PDFClin Ophthalmol
December 2024
Department of Ophthalmology, New Vision Eye Center, Vero Beach, FL, USA.
Purpose: To evaluate real-world outcomes in subjects with pre-existing neovascular age-related macular degeneration (AMD) undergoing intravitreal avacincaptad pegol (IVA) treatment for geographic atrophy (GA).
Methods: This study was undertaken as a retrospective, case-controlled assessment of patients undergoing IVA treatment for GA from 2 community-based retina practices. Patients were separated into 1) a Study Group consisting of subjects with pre-existing neovascular AMD prior to initiation of IVA for GA, and 2) a Control Group consisting of AMD subjects without neovascularization prior to initiation of IVA for GA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!