Background: Myocardial fibrosis represents a mainstay pathway in the pathophysiology of uremic cardiomyopathy. This process leads to structural and functional changes in the heart, which can be detected by echocardiography. The purpose of our study was to determine the association between four echocardiographic parameters (ejection fraction (EF), global longitudinal strain (GLS), mean E/e' ratio, and left atrial volume indexed) and biomarkers associated with cardiac fibrosis, such as procollagen type I carboxy-terminal propeptide (PICP), procollagen type III N-terminal peptide (P3NP), and galectin-3 (Gal-3) in patients with end-stage renal disease (ESRD).
Methods: 140 patients with ESRD were enrolled and investigated by echocardiography and the serum levels of the aforementioned biomarkers were determined at baseline.
Results: The mean EF was 53.63 ± 8%, the mean GLS was -10.2 ± 5.3%, the mean E/e' ratio was 9.8 ± 4.3, and the mean left atrial volume indexed (LAVI) was 45.8 ± 14.2 mL/m. The average levels for PICP, P3NP, and Gal-3 were 457.2 ± 240 µg/L, 242 ± 199.9 µg/L, and 10.7 ± 3.7 ng/mL, respectively. In regression analysis, PICP was strongly associated with all four echocardiographic parameters (EF: = 0.0002, R = 0.69; GLS: = 0.00001, R = 0.81; mean E/e': = 0.00002; R = 0.89; LAVI: = 0.003; R = 0.73). P3NP and Gal-3 were only associated with the EF ( = 0.01, R = 0.31 and = 0.02; R = 0.35, respectively).
Conclusion: Our study evidenced that PICP, a collagen-derived biomarker, is associated with important echocardiography parameters, suggesting that it can serve as an indicator of the presence of subclinical systolic and diastolic dysfunction in patients with advanced CKD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10143889 | PMC |
http://dx.doi.org/10.3390/jcm12083003 | DOI Listing |
Cell Death Dis
December 2024
Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China.
The influence of the mitochondrial control system on ischemic heart disease has become a major focus of current research. Mitophagy, as a very crucial part of the mitochondrial control system, plays a special role in ischemic heart disease, unlike mitochondrial dynamics. The published reviews have not explored in detail the unique function of mitophagy in ischemic heart disease, therefore, the aim of this paper is to summarize how mitophagy regulates the progression of ischemic heart disease.
View Article and Find Full Text PDFCytojournal
November 2024
Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China.
Objective: Macrophages perform vital functions in cardiac remodeling after myocardial infarction (MI). Transglutaminase 2 (TG2) participates in fibrosis. Nevertheless, the role of TG2 in MI and mechanisms underlying macrophage polarization are unclear.
View Article and Find Full Text PDFBMC Cardiovasc Disord
December 2024
Department of General Medicine, The Affiliated Hospital of Inner Mongolia Medical University, No.1, Tongdao North Road, Huimin District, Hohhot, Inner Mongolia, 010050, China.
Background: Heart failure (HF) is a syndrome with complex etiology and high mortality in the world. Macrophage-related inflammation is involved in HF development. O-GlcNAcylation is a post-translational modification that affects pathological processes.
View Article and Find Full Text PDFBMC Cardiovasc Disord
December 2024
Jiangxi University of Chinese Medicine, Jiangxi, China.
Background: Qi Li Qiang Xin (QLQX) capsule has a solid theoretical basis and clinical efficacy in the treatment of chronic heart failure; however, the underlying mechanisms remain obscure. This study was designed to determine the effect of the QLQX on the treatment of heart failure and delineate the underlying mechanisms via a nontargeted metabolomics and lipidomics approach.
Methods: A rat model of heart failure after myocardial infarction (MI) was established via permanent ligation of the anterior descending branch of the left coronary artery.
Front Biosci (Landmark Ed)
December 2024
Department of Cardiovascular Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, 410008 Changsha, Hunan, China.
Background: Chronic heart failure (CHF) is a serious cardiovascular condition. Vascular peroxidase 1 (VPO1) is associated with various cardiovascular diseases, yet its role in CHF remains unclear. This research aims to explore the involvement of VPO1 in CHF.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!