Physical inactivity increases cardiometabolic risk through a variety of mechanisms, among which alterations of immunological, metabolic, and autonomic control systems may play a pivotal role. Physical inactivity is frequently associated with other factors that may further worsen prognosis. The association between physical inactivity and hypoxia is particularly interesting and characterizes several conditions-whether physiological (e.g., residing or trekking at high altitude and space flights) or pathological (e.g., chronic cardiopulmonary diseases and COVID-19). In this randomized intervention study, we investigated the combined effects of physical inactivity and hypoxia on autonomic control in eleven healthy and physically active male volunteers, both at baseline (ambulatory) conditions and, in a randomized order, hypoxic ambulatory, hypoxic bedrest, and normoxic bedrest (i.e., a simple experimental model of physical inactivity). Autoregressive spectral analysis of cardiovascular variabilities was employed to assess cardiac autonomic control. Notably, we found hypoxia to be associated with an impairment of cardiac autonomic control, especially when combined with bedrest. In particular, we observed an impairment of indices of baroreflex control, a reduction in the marker of prevalent vagal control to the SA node, and an increase in the marker of sympathetic control to vasculature.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10146556 | PMC |
http://dx.doi.org/10.3390/jpm13040585 | DOI Listing |
J Neurotrauma
December 2024
Department of Medical Sciences, Section of Neurosurgery, Uppsala University, Uppsala, Sweden.
This study compared the roles of extraparenchymal autonomic nervous system (ANS) control of cerebral blood flow (CBF) versus intraparenchymal cerebrovascular autoregulation in 487 patients with aneurysmal subarachnoid hemorrhage (SAH) and 413 patients with traumatic brain injury (TBI). Vasomotion intensity of extraparenchymal and intraparenchymal vessels were quantified as the amplitude of oscillations of arterial blood pressure (ABP) and intracranial pressure (ICP) in the very low frequency range of 0.02-0.
View Article and Find Full Text PDFCNS Neurosci Ther
December 2024
Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang, China.
Front Sports Act Living
December 2024
Department of Health, LUNEX University of Applied Sciences, Differdange, Luxembourg.
Objectives: To conduct a systematic review to determine the acute and chronic effects of inspiratory muscle training (IMT) in type 2 diabetes mellitus (T2DM) patients on cardiac autonomic function, glucose variability, inspiratory muscle strength and endurance, hemodynamic variables, and exercise capacity.
Methods: A search was carried out according to a specific search strategy, following the PRISMA statement, and three independent reviewers have undertaken the article selection process. Searches were carried out in June 2023, on the following electronic databases: EMBASE, MEDLINE (PubMed), SCOPUS (Elsevier), and Web of Science.
J Physiol
December 2024
Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, USA.
Loss of cardiac physiological function following myocardial infarction (MI) is accompanied by neural adaptations in the baroreflex that are compensatory in the short term, but then become associated with long-term disease progression. One marker of these adaptations is decreased baroreflex sensitivity, a strong predictor of post-MI mortality. The relative contributions of cardiac remodelling and neural adaptation in the sensory, central brainstem and peripheral ganglionic loci to baroreflex sensitivity changes remain underexplored.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2024
Department of Biotechnology and Department of Integrative Food, Bioscience and Biotechnology (BK21 FOUR), Chonnam National University, Gwangju, 61186, South Korea. Electronic address:
Methylergometrine has widely been used pharmacologically to treat conditions such as pain, addiction, vasoconstriction, migraines, and Parkinson's disease. Despite its side effects, it is used as a therapeutic agent and research material for various diseases based on its natural potential; however, the regulatory effect of its interaction with the nicotinic acetylcholine receptor (nAChR) has not yet been investigated. The α3β4 nAChR is an ion channel essential for neurotransmission within the sympathetic, parasympathetic, and autonomic nervous systems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!