Transcriptomic Complexity of Culm Growth and Development in Different Types of Moso Bamboo.

Int J Mol Sci

Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.

Published: April 2023

Moso bamboo is capable of both sexual and asexual reproduction during natural growth, resulting in four distinct types of culms: the bamboo shoot-culm, the seedling stem, the leptomorph rhizome, and a long-ignored culm-the outward-rhizome. Sometimes, when the outward rhizomes break through the soil, they continue to grow longitudinally and develop into a new individual. However, the roles of alternative transcription start sites (aTSS) or termination sites (aTTS) as well as alternative splicing (AS) have not been comprehensively studied for their development. To re-annotate the moso bamboo genome and identify genome-wide aTSS, aTTS, and AS in growing culms, we utilized single-molecule long-read sequencing technology. In total, 169,433 non-redundant isoforms and 14,840 new gene loci were identified. Among 1311 lncRNAs, most of which showed a positive correlation with their target mRNAs, one-third of these IncRNAs were preferentially expressed in winter bamboo shoots. In addition, the predominant AS type observed in moso bamboo was intron retention, while aTSS and aTTS events occurred more frequently than AS. Notably, most genes with AS events were also accompanied by aTSS and aTTS events. Outward rhizome growth in moso bamboo was associated with a significant increase in intron retention, possibly due to changes in the growth environment. As different types of moso bamboo culms grow and develop, a significant number of isoforms undergo changes in their conserved domains due to the regulation of aTSS, aTTS, and AS. As a result, these isoforms may play different roles than their original functions. These isoforms then performed different functions from their original roles, contributing to the transcriptomic complexity of moso bamboo. Overall, this study provided a comprehensive overview of the transcriptomic changes underlying different types of moso bamboo culm growth and development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10138756PMC
http://dx.doi.org/10.3390/ijms24087425DOI Listing

Publication Analysis

Top Keywords

moso bamboo
32
atss atts
16
types moso
12
bamboo
10
transcriptomic complexity
8
culm growth
8
growth development
8
moso
8
intron retention
8
atts events
8

Similar Publications

Analysis of the CHS Gene Family Reveals Its Functional Responses to Hormones, Salinity, and Drought Stress in Moso Bamboo ().

Plants (Basel)

January 2025

State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China.

Chalcone synthase (CHS), the first key structural enzyme in the flavonoid biosynthesis pathway, plays a crucial role in regulating plant responses to abiotic stresses and hormone signaling. However, its molecular functions remain largely unknown in , which is one of the most economically and ecologically important bamboo species and the most widely distributed one in China. This study identified 17 genes in and classified them into seven subgroups, showing a closer evolutionary relationship to genes from rice.

View Article and Find Full Text PDF

Background: Non-structural carbohydrates (NSCs) are key substances for metabolic processes in plants, providing energy for growth, development, and responses to environmental stress. Pruning mother bamboo in a clump can significantly affect the NSCs allocation of new shoots, thereby affecting their growth. Moso bamboo (Phyllostachys edulis) is an important economic bamboo species with a highest planting area in China.

View Article and Find Full Text PDF

Lead (Pb) is a hazardous element that affects the growth and development of plants, while silicon (Si) is a beneficial element for alleviating the stress caused by heavy metals, including Pb. However, the mechanisms of Si reduce Pb accumulation in Moso bamboo remain unclear. In this study, physiological assessments and transcriptome analyses were conducted to investigate the interaction between Si and Pb.

View Article and Find Full Text PDF

Unraveling the intricate tapestry of bamboo transcription factors in abiotic stress signaling and resilience with special reference to moso bamboo family.

Biochim Biophys Acta Gen Subj

February 2025

Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India. Electronic address:

The abiotic stress tolerance mechanism in plants is regulated by multiple physiological, biochemical, and molecular processes; hence, omics approaches to underpin these mechanisms are essential. It is clear that transcription factors (TFs) are one of the fundamental molecular switches that play a crucial role in modulating, regulating, and orchestrating plants in response to various climatic vagaries. Several reports are available now, focusing on understanding the roles of TFs, including those in Poaceae family in regulating different biological processes and stress responses.

View Article and Find Full Text PDF

[This corrects the article DOI: 10.3389/fpls.2023.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!