Ionizing radiation (IR) is used to treat 50% of cancers. While the cytotoxic effects related to DNA damage with IR have been known since the early 20th century, the role of the immune system in the treatment response is still yet to be fully determined. IR can induce immunogenic cell death (ICD), which activates innate and adaptive immunity against the cancer. It has also been widely reported that an intact immune system is essential to IR efficacy. However, this response is typically transient, and wound healing processes also become upregulated, dampening early immunological efforts to overcome the disease. This immune suppression involves many complex cellular and molecular mechanisms that ultimately result in the generation of radioresistance in many cases. Understanding the mechanisms behind these responses is challenging as the effects are extensive and often occur simultaneously within the tumor. Here, we describe the effects of IR on the immune landscape of tumors. ICD, along with myeloid and lymphoid responses to IR, are discussed, with the hope of shedding light on the complex immune stimulatory and immunosuppressive responses involved with this cornerstone cancer treatment. Leveraging these immunological effects can provide a platform for improving immunotherapy efficacy in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10138513PMC
http://dx.doi.org/10.3390/ijms24087359DOI Listing

Publication Analysis

Top Keywords

immunological effects
8
immune system
8
effects
5
immune
5
harnessing immunological
4
effects radiation
4
radiation improve
4
improve immunotherapies
4
immunotherapies cancer
4
cancer ionizing
4

Similar Publications

Stubborn biofilm infections pose serious threats to public health. Clinical practices highly rely on mechanical debridement and antibiotics, which often fail and lead to persistent and recurrent infections. The main culprits are 1) persistent bacteria reviving, colonizing, and rejuvenating biofilms, and 2) secondary pathogen exposure, particularly in individuals with chronic diseases.

View Article and Find Full Text PDF

Cytokine screening identifies TNF to potentially enhance immunogenicity of pediatric sarcomas.

Front Immunol

December 2024

Department of Pediatrics, Children's Cancer Research Center, Kinderklinik München Schwabing, TUM School of Medicine, Technical University of Munich, Munich, Germany.

Introduction: Pediatric sarcomas, including osteosarcoma (OS), Ewing sarcoma (EwS) and rhabdomyosarcoma (RMS) carry low somatic mutational burden and low MHC-I expression, posing a challenge for T cell therapies. Our previous study showed that mediators of monocyte maturation sensitized the EwS cell line A673 to lysis by HLA-A*02:01/CHM1-specific allorestricted T cell receptor (TCR) transgenic CD8 T cells (CHM1 CD8 T cells).

Methods: In this study, we tested a panel of monocyte maturation cytokines for their ability to upregulate immunogenic cell surface markers on OS, EwS and RMS cell lines, using flow cytometry.

View Article and Find Full Text PDF

Despite the availability of a highly efficacious vaccine, a global resurgence of measles infections has occurred, largely due to decreased vaccination coverage and waning immunity following the two-dose vaccination schedule. This study aims to assess the cellular immune response in individuals who did not respond to the two-dose MMR vaccine and evaluate the efficacy and durability of immune responses after booster doses. An observational study was conducted involving 24 individuals who were seronegative for measles years after completing the two-dose MMR vaccine schedule.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Inflammatory Bowel Disease (IBD), encompassing Ulcerative Colitis (UC) and Crohn's Disease (CD), stems from a multifaceted interaction of hereditary, immunological, ecological, and microbial elements. Current treatments have limitations, necessitating new therapeutic approaches.

Aim Of The Study: This study investigates the safeguarding impacts and fundamental processes of extracts of Gleditsia sinensis Lam.

View Article and Find Full Text PDF

Cutaneous innate lymphoid populations drive IL-17A-mediated immunity in Nannizzia gypsea dermatophytosis.

J Invest Dermatol

December 2024

Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI) CONICET, ARGENTINA. Electronic address:

Fungal skin infections significantly contribute to the global human disease burden, yet our understanding of cutaneous immunity against dermatophytes remains limited. Previously, we developed a model of epicutaneous infection with Microsporum canis in C57BL/6 mice, which highlighted the critical role of IL-17RA signaling in anti-dermatophyte defenses. Here, we expanded our investigation to the human pathogen Nannizzia gypsea and demonstrated that skin γδTCRint and CD8/CD4 double-negative βTCR+ T cells are the principal producers of IL-17A during dermatophytosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!