Assessing the Orthogonality of Phage-Encoded RNA Polymerases for Tailored Synthetic Biology Applications in Species.

Int J Mol Sci

Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21 Box 2462, 3001 Leuven, Belgium.

Published: April 2023

The phage T7 RNA polymerase (RNAP) and lysozyme form the basis of the widely used pET expression system for recombinant expression in the biotechnology field and as a tool in microbial synthetic biology. Attempts to transfer this genetic circuitry from to non-model bacterial organisms with high potential have been restricted by the cytotoxicity of the T7 RNAP in the receiving hosts. We here explore the diversity of T7-like RNAPs mined directly from phages for implementation in species, thus relying on the co-evolution and natural adaptation of the system towards its host. By screening and characterizing different viral transcription machinery using a vector-based system in ., we identified a set of four non-toxic phage RNAPs from phages phi15, PPPL-1, Pf-10, and 67PfluR64PP, showing a broad activity range and orthogonality to each other and the T7 RNAP. In addition, we confirmed the transcription start sites of their predicted promoters and improved the stringency of the phage RNAP expression systems by introducing and optimizing phage lysozymes for RNAP inhibition. This set of viral RNAPs expands the adaption of T7-inspired circuitry towards species and highlights the potential of mining tailored genetic parts and tools from phages for their non-model host.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10138996PMC
http://dx.doi.org/10.3390/ijms24087175DOI Listing

Publication Analysis

Top Keywords

synthetic biology
8
rnap
5
assessing orthogonality
4
orthogonality phage-encoded
4
phage-encoded rna
4
rna polymerases
4
polymerases tailored
4
tailored synthetic
4
biology applications
4
applications species
4

Similar Publications

Quantitative Measurement of Molecular Permeability to a Synthetic Bacterial Microcompartment Shell System.

ACS Synth Biol

January 2025

Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94702, United States.

Naturally evolved and synthetically designed forms of compartmentalization benefit encapsulated function by increasing local concentrations of substrates and protecting cargo from destabilizing environments and inhibitors. Crucial to understanding the fundamental principles of compartmentalization are experimental systems enabling the measurement of the permeability rates of small molecules. Here, we report the experimental measurement of the small-molecule permeability of a 40 nm icosahedral bacterial microcompartment shell.

View Article and Find Full Text PDF

Epigenetics in the modern era of crop improvements.

Sci China Life Sci

January 2025

State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China.

Epigenetic mechanisms are integral to plant growth, development, and adaptation to environmental stimuli. Over the past two decades, our comprehension of these complex regulatory processes has expanded remarkably, producing a substantial body of knowledge on both locus-specific mechanisms and genome-wide regulatory patterns. Studies initially grounded in the model plant Arabidopsis have been broadened to encompass a diverse array of crop species, revealing the multifaceted roles of epigenetics in physiological and agronomic traits.

View Article and Find Full Text PDF

Efficient and Rapid Enrichment of Extracellular Vesicles Using DNA Nanotechnology-Enabled Synthetic Nano-Glue.

Anal Chem

January 2025

The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China.

Swift and efficient enrichment and isolation of extracellular vesicles (EVs) are crucial for enhancing precise disease diagnostics and therapeutic strategies, as well as elucidating the complex biological roles of EVs. Conventional methods of isolating EVs are often marred by lengthy and laborious processes. In this study, we introduce an innovative approach to enrich and isolate EVs by leveraging the capabilities of DNA nanotechnology.

View Article and Find Full Text PDF

DNMT3A loss drives a HIF-1-dependent synthetic lethality to HDAC6 inhibition in non-small cell lung cancer.

Acta Pharm Sin B

December 2024

Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China.

encodes a DNA methyltransferase involved in development, cell differentiation, and gene transcription, which is mutated and aberrant-expressed in cancers. Here, we revealed that loss of promotes malignant phenotypes in lung cancer. Based on the epigenetic inhibitor library synthetic lethal screening, we found that small-molecule HDAC6 inhibitors selectively killed -defective NSCLC cells.

View Article and Find Full Text PDF

Robust multi-read reconstruction from noisy clusters using deep neural network for DNA storage.

Comput Struct Biotechnol J

December 2024

Systems Biology Center, Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.

DNA holds immense potential as an emerging data storage medium. However, the recovery of information in DNA storage systems faces challenges posed by various errors, including IDS errors, strand breaks, and rearrangements, inevitably introduced during synthesis, amplification, sequencing, and storage processes. Sequence reconstruction, crucial for decoding, involves inferring the DNA reference from a cluster of erroneous copies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!