Plasma membranes from chromaffin cells of bovine adrenal medullae and from chicken macrophages were isolated on a urografin density gradient, frozen and sectioned without previous chemical fixation. Their receptor binding sites were localized by specific labelling. The sections were then post-fixed in the presence of K2Cr2O7 to produce positive staining of the membrane proteins. Chromaffin cell membranes formed single vesicles. The nicotinic acetylcholine receptor (localized using a monoclonal antibody against its cholinergic binding site) was always found in patches on the surface of vesicles, whose profiles corresponded to thickened bilayers. Macrophage membrane vesicles were agglutinated. The mannose receptor (localized using the ligand, mannosylferritin) was randomly distributed within the electron-dense coat of the agglutinated vesicles or on electron-dense caps involved in agglutination. The binding sites of both receptors were intact, as revealed by their being recognized by a monoclonal antibody against their cholinergic binding sites and by the active binding of the mannosylated ligand which was inhibited by mannan. The distribution of the receptors on the vesicles reflected their distribution on the cell surface.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00499832DOI Listing

Publication Analysis

Top Keywords

binding sites
12
receptor localized
8
monoclonal antibody
8
antibody cholinergic
8
cholinergic binding
8
binding
5
vesicles
5
ultracryotomy study
4
study unfixed
4
unfixed membranes
4

Similar Publications

A major challenge in the field of synthetic motors relates to mimicking the precise, motion of biological motor proteins, which mediates processes such as cargo transport, cell locomotion, and cell division. To address this challenge, we developed a system to control the motion of DNA-based synthetic motors using light. DNA motors are composed of a central chassis particle modified with DNA "legs" that hybridize to RNA "fuel", and move upon enzymatic consumption of RNA.

View Article and Find Full Text PDF

Design of a light and Ca switchable organic-peptide hybrid.

Proc Natl Acad Sci U S A

February 2025

SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea.

The design of organic-peptide hybrids has the potential to combine our vast knowledge of protein design with small molecule engineering to create hybrid structures with complex functions. Here, we describe the computational design of a photoswitchable Ca-binding organic-peptide hybrid. The designed molecule, designated Ca-binding switch (CaBS), combines an EF-hand motif from classical Ca-binding proteins such as calmodulin with a photoswitchable group that can be reversibly isomerized between a spiropyran (SP) and merocyanine (MC) state in response to different wavelengths of light.

View Article and Find Full Text PDF

In the ancient microbial Wood-Ljungdahl pathway, carbon dioxide (CO) is fixed in a multistep process that ends with acetyl-coenzyme A (acetyl-CoA) synthesis at the bifunctional carbon monoxide dehydrogenase/acetyl-CoA synthase complex (CODH/ACS). In this work, we present structural snapshots of the CODH/ACS from the gas-converting acetogen , characterizing the molecular choreography of the overall reaction, including electron transfer to the CODH for CO reduction, methyl transfer from the corrinoid iron-sulfur protein (CoFeSP) partner to the ACS active site, and acetyl-CoA production. Unlike CODH, the multidomain ACS undergoes large conformational changes to form an internal connection to the CODH active site, accommodate the CoFeSP for methyl transfer, and protect the reaction intermediates.

View Article and Find Full Text PDF

Background: RNA polymerase-binding protein A (RbpA) is an actinomycetes-specific protein crucial for the growth and survival of the pathogen Mycobacterium tuberculosis. Its role is essential and influences the transcription and antibiotic responses. However, the regulatory mechanisms underlying RbpA-mediated transcription remain unknown.

View Article and Find Full Text PDF

Cognitive dysfunction in Alzheimer's disease results from a complex interplay of various pathological processes, including the dysregulation of key enzymes such as acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), and monoamine oxidase B (MAO-B). This study proposes and designs a series of novel molecules derived from 8-hydroxyquinoline (Azo-8HQ) as potential multi-target lead candidates for treating AD. An exhaustive in silico analysis was conducted, encompassing docking studies, ADMET analysis, density functional theory (DFT) studies, molecular dynamics simulations, and subsequent MM-GBSA calculations to examine the pharmacological potential of these molecules with the specific targets of interest.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!