Lipidomics is a term used to define the field that analyzes the structure, functions, and interactions of lipids. Inflammatory dermatoses and lipid disturbances are interrelated, especially due to chronic inflammatory conditions. This review discusses lipidomics in selected inflammatory skin diseases: psoriasis, lichen planus, and atopic dermatitis, as well as the less commonly mentioned hidradenitis suppurativa, rosacea, and acne vulgaris. Lipid homeostasis disorders are common; they are especially well-documented in psoriasis, lichen planus, and atopic dermatitis. Future studies are required for better insight into this issue, particularly on the skin lipidome. Understanding lipidomics, in particular skin diseases, increases our knowledge about their pathogenesis, and may become useful in adjusting tailored management for each patient as well establishing prognosis. Noteworthily, it seems advisable to alert doctors to the need to analyze lipid parameters and the complications of abnormal lipid metabolism in dermatological patients, which could decrease their comorbidities and improve the life quality and health condition of dermatological patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10138531 | PMC |
http://dx.doi.org/10.3390/ijms24087053 | DOI Listing |
Front Immunol
January 2025
Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
Today, cancer has become one of the leading global tragedies. It occurs when a small number of cells in the body mutate, causing some of them to evade the body's immune system and proliferate uncontrollably. Even more irritating is the fact that patients with cancers frequently relapse after conventional chemotherapy and radiotherapy, leading to additional suffering.
View Article and Find Full Text PDFFront Public Health
January 2025
Dermatology Department, Colentina Clinical Hospital, Bucharest, Romania.
Introduction: Atopic dermatitis (AD), a common dermatological condition, is often associated with significant economic and social burdens. Despite extensive studies globally, there is a gap in understanding the impact of this condition in Romania. This study evaluated the economic burden of AD in Romania, considering both direct and indirect costs.
View Article and Find Full Text PDFIndian Dermatol Online J
December 2024
Department of Pathology, All India Institute of Medical Sciences, New Delhi, India.
Introduction: Acquired inflammatory Blaschko-linear dermatoses have not been studied extensively. Descriptive studies on segmental vitiligo have yielded insights helpful in counseling patients. Similar insights are expected from studies on other acquired inflammatory Blaschko-linear diseases.
View Article and Find Full Text PDFIndian Dermatol Online J
December 2024
Department of Experimental and Clinical Medicine, DISM, Institute of Dermatology Udine, Udine, Italy.
Introduction: Ultraviolet-induced fluorescence dermoscopy (UVF dermoscopy) is a novel diagnostic technique for identifying and diagnosing numerous skin tumors, inflammatory dermatoses, and infectious diseases. The ultraviolet (UV) band has a wavelength ranging from 10 to 400 nm. When intense UV radiation with shorter wavelengths strikes a target chromophore, visible light (VL) with a longer wavelength and lower energy is produced in the skin.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
January 2025
The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China.
The article provides an overview of the current understanding of the interplay between metabolic pathways and immune function in the context of triple-negative breast cancer (TNBC). It highlights recent advancements in single-cell and spatial transcriptomics technologies, which have revolutionized the analysis of tumor heterogeneity and the immune microenvironment in TNBC. The review emphasizes the crucial role of metabolic reprogramming in modulating immune cell function, discussing how specific metabolic pathways, such as glycolysis, lipid metabolism, and amino acid metabolism, can directly impact the activity and phenotypes of various immune cell populations within the TNBC tumor microenvironment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!