Inhibitory Synaptic Influences on Developmental Motor Disorders.

Int J Mol Sci

Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55902, USA.

Published: April 2023

During development, GABA and glycine play major trophic and synaptic roles in the establishment of the neuromotor system. In this review, we summarise the formation, function and maturation of GABAergic and glycinergic synapses within neuromotor circuits during development. We take special care to discuss the differences in limb and respiratory neuromotor control. We then investigate the influences that GABAergic and glycinergic neurotransmission has on two major developmental neuromotor disorders: Rett syndrome and spastic cerebral palsy. We present these two syndromes in order to contrast the approaches to disease mechanism and therapy. While both conditions have motor dysfunctions at their core, one condition Rett syndrome, despite having myriad symptoms, has scientists focused on the breathing abnormalities and their alleviation-to great clinical advances. By contrast, cerebral palsy remains a scientific quagmire or poor definitions, no widely adopted model and a lack of therapeutic focus. We conclude that the sheer abundance of diversity of inhibitory neurotransmitter targets should provide hope for intractable conditions, particularly those that exhibit broad spectra of dysfunction-such as spastic cerebral palsy and Rett syndrome.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10138861PMC
http://dx.doi.org/10.3390/ijms24086962DOI Listing

Publication Analysis

Top Keywords

rett syndrome
12
cerebral palsy
12
gabaergic glycinergic
8
spastic cerebral
8
inhibitory synaptic
4
synaptic influences
4
influences developmental
4
developmental motor
4
motor disorders
4
disorders development
4

Similar Publications

Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in the gene, potentially disrupting lipid metabolism and leading to dyslipidemia (DLD) and steatotic liver disease (SLD). Although SLD has been described in RTT mouse models, it remains undocumented in humans. We herein describe a 24-year-old woman with RTT who was evaluated for abnormal liver enzymes.

View Article and Find Full Text PDF

Background: There are no approved oral disease-modifying treatments for Alzheimer's disease (AD).

Objectives: The objective of this study was to assess efficacy and safety of blarcamesine (ANAVEX®2-73), an orally available small-molecule activator of the sigma-1 receptor (SIGMAR1) in early AD through restoration of cellular homeostasis including autophagy enhancement.

Design: ANAVEX2-73-AD-004 was a randomized, double-blind, placebo-controlled, 48-week Phase IIb/III trial.

View Article and Find Full Text PDF

: duplication syndrome (MDS) (MIM#300260) is a rare X-linked neurodevelopmental disorder. This study aims to (1) develop a specific clinical severity scale, (2) explore its correlation with clinical and molecular variables, and (3) automate diagnosis using the Face2gene platform. : A retrospective study was conducted on genetically confirmed MDS patients who were evaluated at a pediatric hospital between 2012 and 2024.

View Article and Find Full Text PDF

DDX3X syndrome is often misdiagnosed as autism spectrum disorder (ASD, Rett Syndrome, and Dandy-Walker Syndrome). Precise phenotyping is needed with reference to neurodevelopmental diagnosis. Observation of behavior and communication in parents with DDX3X syndrome in the USA, France, and Poland; conversations with the parents of patients; and rudimentary information in evidence-based medical articles prompted us to identify differences in communication, play, and social interaction between children with ASD only, those with both ASD and , and those with only.

View Article and Find Full Text PDF

Rett syndrome (RTT), which predominantly affects females, arises in most cases from mutations in the () gene. When MeCP2 is impaired, it disrupts the regulation of numerous genes, causing the production of dysfunctional proteins associated with various multi-systemic issues in RTT. In this review, we explore the current insights into molecular signaling related to monoamines, immune response, and mitochondrial function, and their implications for the pathophysiology of RTT.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!