This study investigated the suitability of outdoor particulate matter data obtained from a fixed monitoring station in estimating the personal deposited dose. Outdoor data were retrieved from a station located within the urban area of Lisbon and simulations were performed involving school children. Two scenarios were applied: one where only outdoor data were used assuming an outdoor exposure scenario, and a second one where an actual exposure scenario was adopted using the actual microenvironment during typical school days. Personal PM and PM dose (actual exposure scenario) was 23.4% and 20.2% higher than the ambient (outdoor exposure scenario) PM and PM doses, respectively. The incorporation of the hygroscopic growth in the calculations increased the ambient dose of PM and PM by 8.8% and 21.7%, respectively. Regression analysis between the ambient and personal dose showed no linearity with R at 0.07 for PM and 0.22 for PM. On the other hand, linear regression between the ambient and school indoor dose showed no linearity (R = 0.01) for PM but moderate (R = 0.48) for PM. These results demonstrate that ambient data must be used with caution for the representativeness of a realistic personal dose of PM while for PM the ambient data cannot be used as a surrogate of a realistic personal dose of school children.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10138915PMC
http://dx.doi.org/10.3390/ijerph20085564DOI Listing

Publication Analysis

Top Keywords

personal dose
20
exposure scenario
16
school children
12
outdoor particulate
8
particulate matter
8
estimating personal
8
dose
8
outdoor data
8
outdoor exposure
8
actual exposure
8

Similar Publications

Warfarin is the most widely used oral anticoagulant in clinical practice. The cytochrome P450 2C9 (CYP2C9), vitamin K epoxide reductase complex 1 (VKORC1), and cytochrome P450 4F2 (CYP4F2) genotypes are associated with warfarin dose requirements in China. Accurate genotyping is vital for obtaining reliable genotype-guided warfarin dosing information.

View Article and Find Full Text PDF

BAY 2413555 is a novel selective and reversible positive allosteric modulator of the type 2 muscarinic acetylcholine (M2) receptor, aimed at enhancing parasympathetic signaling and restoring cardiac autonomic balance for the treatment of heart failure (HF). This study tested the safety, tolerability and pharmacokinetics of this novel therapeutic option. REMOTE-HF was a multicenter, double-blind, randomized, placebo-controlled, phase Ib dose-titration study with two active arms.

View Article and Find Full Text PDF

Here we report results of a phase 1 multi-institutional, open-label, dose-escalation trial (NCT02744287) of BPX-601, an investigational autologous PSCA-directed GoCAR-T® cell product containing an inducible MyD88/CD40 ON-switch responsive to the activating dimerizer rimiducid, in patients with metastatic pancreatic (mPDAC) or castration-resistant prostate cancer (mCRPC). Primary objectives were to evaluate safety and tolerability and determine the recommended phase 2 dose/schedule (RP2D). Secondary objectives included the assessment of efficacy and characterization of the pharmacokinetics of rimiducid.

View Article and Find Full Text PDF

Objective: Childhood cancer treatment disrupts vaccination schedules and weakens or eliminates vaccine-induced immunity. In addition, post-treatment vaccine responses vary. This study aimed to assess post-treatment serum antibody levels and vaccine responses in children.

View Article and Find Full Text PDF

Introduction: Thrombocytopenia is a common clinical problem in cancer patients undergoing high-dose chemotherapy and autologous hematopoietic stem cell transplantation (HSCT). It can occur as prolonged isolated thrombocytopenia (PIT) or secondary failure of platelet recovery (SFPR) and may cause potentially fatal bleeding. However, data on the treatment of post-transplant thrombocytopenia is still lacking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!