The species delimitation of the marine bivalve species complex in South America and Antarctica is complicated by mitochondrial heteroplasmy and amplification bias in molecular barcoding. In this study, we compare different data sources (mitochondrial cytochrome c oxidase subunit I () sequences; nuclear and mitochondrial SNPs). Whilst all the data suggest that populations on either side of the Drake Passage belong to different species, the picture is less clear within Antarctic populations, which harbor three distinct mitochondrial lineages (p-dist ≈ 6%) that coexist in populations and in a subset of individuals with heteroplasmy. Standard barcoding procedures lead to amplification bias favoring either haplotype unpredictably and thus overestimate the species richness with high confidence. However, nuclear SNPs show no differentiation akin to the trans-Drake comparison, suggesting that the Antarctic populations represent a single species. Their distinct haplotypes likely evolved during periods of temporary allopatry, whereas recombination eroded similar differentiation patterns in the nuclear genome after secondary contact. Our study highlights the importance of using multiple data sources and careful quality control measures to avoid bias and increase the accuracy of molecular species delimitation. We recommend an active search for mitochondrial heteroplasmy and haplotype-specific primers for amplification in DNA-barcoding studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10138075PMC
http://dx.doi.org/10.3390/genes14040935DOI Listing

Publication Analysis

Top Keywords

mitochondrial heteroplasmy
12
amplification bias
12
species delimitation
12
species
8
high confidence
8
marine bivalve
8
bivalve species
8
species complex
8
data sources
8
antarctic populations
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!