The treatment of full-thickness skin wounds is a problem in the clinical setting, as they do not heal spontaneously. Extensive pain at the donor site and a lack of skin grafts limit autogenic and allogeneic skin graft availability. We evaluated fetal bovine acellular dermal matrix (FADM) in combination with human Wharton's jelly mesenchymal stem cells (hWJ-MSCs) to heal full-thickness skin wounds. FADM was prepared from a 6-month-old trauma-aborted fetus. WJ-MSCs were derived from a human umbilical cord and seeded on the FADM. Rat models of full-thickness wounds were created and divided into three groups: control (no treatment), FADM, and FADM-WJMSCs groups. Wound treatment was evaluated microscopically and histologically on days 7, 14, and 21 post-surgery. The prepared FADM was porous and decellularized with a normal range of residual DNA. WJ-MSCs were seeded and proliferated on FADM effectively. The highest wound closure rate was observed in the FADM-WJMSC group on days 7 and 14 post-surgery. Furthermore, this group had fewer inflammatory cells than other groups. Finally, in this study, we observed that, without using the differential cell culture media of fibroblasts, the xenogeneic hWJSCs in combination with FADM could promote an increased rate of full-thickness skin wound closure with less inflammation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10138153 | PMC |
http://dx.doi.org/10.3390/genes14040909 | DOI Listing |
J Cell Mol Med
January 2025
Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
Impaired wound healing affects the life quality of patients and causes a substantial financial burden. Hydrogen-rich medium is reported to have antioxidant and anti-inflammatory effects. However, the role of hydrogen-rich saline (HRS) in cutaneous wound healing remains largely unexplored, especially by metabolomics.
View Article and Find Full Text PDFJ Vis Exp
December 2024
State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University; Department of Endodontics, West China Hospital of Stomatology, Sichuan University;
Severe burn injuries are among the most traumatic and physically debilitating conditions, impacting nearly every organ system and resulting in considerable morbidity and mortality. Given their complexity and the involvement of multiple organs, various animal models have been created to replicate different facets of burn injury. Methods used to produce burned surfaces vary among experimental animal models.
View Article and Find Full Text PDFAnn Surg
January 2025
Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, 200433, Shanghai, People's Republic of China; Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, 200433, Shanghai, People's Republic of China.
Objective: We aim to determine the optimal timing and approaches for first tangential excision of severely burned patients ≥70% total body surface area (TBSA).
Background: Early tangential excision is the gold-standard surgical therapy for full-thickness burns. However, there are debates about its optimal timing and approaches for severely burned patients ≥70%TBSA.
Int Wound J
January 2025
Department of Plastic and Reconstructive Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.
We aimed to compare the scar quality and recovery rate of joint activity for patients with joint-involved burn injuries receiving either artificial dermis (AD) with split-thickness skin graft (STSG) or full-thickness skin graft (FTSG) for reconstruction. The primary outcomes were %skin graft (SG) take. Secondary outcomes included complications such as the infection rate and donor site morbidity, 12-month scar quality evaluated using the Vancouver scar scale (VSS), recovery rate of joint activity and incidence of scar contracture requiring further revision.
View Article and Find Full Text PDFInt J Pharm
January 2025
Key Laboratory of Biopharmaceutical Preparation and Delivery, State Key Laboratory of Biochemical Engineering, Chinese Academy of Sciences, Beijing 100190 China; Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457 China. Electronic address:
Trauma healing is the process of healing after the body has been subjected to an external force and the skin and other tissues have become dissected or defective, showing the synergistic effect of various processes. Therefore, the investigation of innovative wound dressings has significant research and clinical implications. In this study, we constructed a zinc based metal-organic framework (MOF) and loaded with antimicrobial peptide LL37 to prepare LL37@ZPF-2 (ZPF = zeolite pyrimidine backbone), which was subsequently integrated with Poloxamer 407 to fabricate LL37@ZPF-2 thermosensitive hydrogel.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!