Highly Efficient A-to-G Editing in PFFs via Multiple ABEs.

Genes (Basel)

State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China.

Published: April 2023

Cytosine base editors (CBEs) and adenine base editors (ABEs) are recently developed CRISPR-mediated genome-editing tools that do not introduce double-strand breaks. In this study, five ABEs, ABE7.10, ABEmax, NG-ABEmax, ABE8e and NG-ABE8e, were used to generate A-to-G (T-to-C) conversions in five genome loci in porcine fetal fibroblasts (PFFs). Variable yet appreciable editing efficiencies and variable activity windows were observed in these targeting regions via these five editors. The strategy of two sgRNAs in one vector exhibited superior editing efficiency to that of using two separate sgRNA expression vectors. ABE-mediated start-codon mutation in silenced its expression of protein and, unexpectedly, eliminated the vast majority of its mRNA. No off-target DNA site was detected for these editors. Substantial off-target RNA events were present in the ABE-edited cells, but no KEGG pathway was found to be significantly enriched. Our study supports that ABEs are powerful tools for A-to-G (T-to-C) point-mutation modification in porcine cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10137487PMC
http://dx.doi.org/10.3390/genes14040908DOI Listing

Publication Analysis

Top Keywords

base editors
8
a-to-g t-to-c
8
highly efficient
4
efficient a-to-g
4
a-to-g editing
4
editing pffs
4
pffs multiple
4
abes
4
multiple abes
4
abes cytosine
4

Similar Publications

Filamentous fungi are important cell factories for producing chemicals, organic acids, and enzymes. Although several genome editing tools are available for filamentous fungi, few effectively enable continuous evolution for rational engineering of complex phenotype. Here, we present CRISPR-Cas9 cytidine-base-editor (CBE) assisted evolution by continuously delivering a combinatorial sgRNA library to filamentous fungi.

View Article and Find Full Text PDF

Mitochondrial base editing: from principle, optimization to application.

Cell Biosci

January 2025

Jinshan Hospital Center for Neurosurgery, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 201508, China.

In recent years, mitochondrial DNA (mtDNA) base editing systems have emerged as bioengineering tools. DddA-derived cytosine base editors (DdCBEs) have been developed to specifically induce C-to-T conversion in mtDNA by the fusion of sequence-programmable transcription activator-like effector nucleases (TALENs) or zinc-finger nucleases (ZFNs), and split deaminase derived from interbacterial toxins. Similar to DdCBEs, mtDNA adenine base editors have been developed with the ability to introduce targeted A-to-G conversions into human mtDNA.

View Article and Find Full Text PDF

Background: Currently, synthetic genomics is a rapidly developing field. Its main tasks, such as the design of synthetic sequences and the assembly of DNA sequences from synthetic oligonucleotides, require specialized software. In this article, we present a program with a graphical interface that allows non-bioinformatics to perform the tasks needed in synthetic genomics.

View Article and Find Full Text PDF

Application of Multiple Base-Editing Mediated by Polycistronic tRNA-gRNA-Processing System in Pig Cells.

Biotechnol Bioeng

January 2025

Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China.

Gene edited pigs have extensive and important application value in the fields of agriculture and biomedicine. With the increasing demand in medical research and agricultural markets, more and more application scenarios require gene edited pigs to possess two or even more advantageous phenotypes simultaneously. The current production of multi gene edited pigs is inefficient, time-consuming, and costly, and there is an urgent need to develop efficient and accurate multi gene editing application technologies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!