The aim of this research was to determine the concentrations of nitrates and nitrites in different types of vegetables that are commonly represented in the diet of the inhabitants of Split and Dalmatian County. Therefore, using the method of random selection, there were 96 samples of different vegetables. The determination of the nitrate and nitrite concentrations was carried out by high-pressure liquid chromatography (HPLC) with a diode array detector (DAD). The nitrate concentrations in the range 2.1-4526.3 mg kg were found in 92.7% of the analyzed samples. The highest nitrate values were found in rucola ( L.) followed by Swiss chard ( L.). In 36.5% of the leafy vegetables intended for consumption without prior heat treatment, nitrite was found in the range of 3.3-537.9 mg kg. The high levels of nitrite in the vegetables intended for fresh consumption and the high nitrate values in Swiss chard indicate the need to establish maximum nitrite limits in vegetables, as well as the broadening of legal nitrate limits to wide varieties of vegetables.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10137473PMC
http://dx.doi.org/10.3390/foods12081655DOI Listing

Publication Analysis

Top Keywords

nitrate values
8
swiss chard
8
vegetables intended
8
nitrate
6
vegetables
6
nitrite
5
leafy vegetable
4
vegetable nitrite
4
nitrite nitrate
4
nitrate content
4

Similar Publications

Boosting Amino Acid Synthesis with WO Sub-Nanoclusters.

Adv Mater

January 2025

College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China.

The conversion of nitrate-rich wastewater and biomass-derived blocks into high-value products using renewably generated electricity is a promising approach to modulate the artificial carbon and nitrogen cycle. Here, a new synthetic strategy of WO sub-nanoclusters is reported and supported on carbon materials as novel efficient electrocatalysts for nitrate reduction and its coupling with α-keto acids. In acidic solutions, the NH-NHOH selectivity can also optimized by adjusting the potential, with the total FE exceeding 80% over a wide potential range.

View Article and Find Full Text PDF

The toxicity of nitrite is an issue that cannot be overlooked in nitrogen pollution within aquaculture. A highly efficient bacterium capable of simultaneous nitrification and denitrification was screened from natto, and its 16S rRNA gene sequence was compared to existing records, confirming its identification as Bacillus subtilis sp. N4.

View Article and Find Full Text PDF

Xiangshan Bay, one of China's most eutrophic semi-enclosed bays, was studied to examine the seasonal distributions of salinity, temperature, nutrients, and nitrate isotopes (δN and δO) to elucidate seasonal variations in nitrate sources and the key factors driving nitrogen level fluctuations. Based on nitrate δN (6.1-8.

View Article and Find Full Text PDF

Nitrogen Assimilation Plays a Role in Balancing the Chloroplastic Glutathione Redox Potential Under High Light Conditions.

Plant Cell Environ

January 2025

The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.

Nitrate reduction requires reducing equivalents produced by the photosynthetic electron transport chain. Therefore, it has been suggested that nitrate assimilation provides a sink for electrons under high light conditions. We tested this hypothesis by monitoring photosynthetic efficiency and the chloroplastic glutathione redox potential (chl-E) of plant lines with mutated glutamine synthetase 2 (GS2) and ferredoxin-dependent glutamate synthase 1 (GOGAT1).

View Article and Find Full Text PDF

A mechanistic model for determining factors that influence inorganic nitrogen fate in corn cultivation.

Environ Sci Process Impacts

January 2025

Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, USA.

Conventional practices for inorganic nitrogen fertilizer are highly inefficient leading to excess nitrogen in the environment. Excess environmental nitrogen induces ecological (, hypoxia, eutrophication) and public health (, nitrate contaminated drinking water) consequences, motivating adoption of management strategies to improve fertilizer use efficiency. Yet, how to limit the environmental impacts from inorganic nitrogen fertilizer while maintaining crop yields is a persistent challenge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!