The Influence of 5',8-Cyclo-2'-Deoxyguanosine on ds-DNA Charge Transfer Depends on Its Diastereomeric Form: A Theoretical Study.

Antioxidants (Basel)

DNA Damage Laboratory of Food Science Department, Faculty of Pharmacy, Medical University of Lodz, ul. Muszynskiego 1, 90-151 Lodz, Poland.

Published: April 2023

The genetic information stored in the nucleobase sequence is continuously exposed to harmful extra- and intra-cellular factors, which can lead to different types of DNA damage, with more than 70 lesion types identified so far. In this article, the influence of a multi-damage site containing (5'/) 5',8-cyclo-2'-deoxyguanosine (cdG) and 7,8-dihydro-8-oxo-2'-deoxyguanosine (dG) on charge transfer through ds-DNA was taken into consideration. The spatial geometries of oligo-RcdG: d[A(5')cGAGA]*d[TCTCT] and oligo-ScdG: d[A(5')cGAGA]*d[TCTCT] were optimized at the M06-2X/6-D95**//M06-2X/sto-3G level of theory in the aqueous phase using ONIOM methodology. For all the electronic property energies under discussion, the M06-2X/6-31++G** level of theory was used. Additionally, the non-equilibrated and equilibrated solvent-solute interactions were into consideration. The obtained results confirm the predisposition of dG to radical cation formation regardless of the presence of other lesions in a ds-DNA structure. In the case of electron transfer, however, the situation is different. An excess electron migration towards (5')cdG was found to be preferred in the case of oligo-ScdG, while in the case of oligo-RcdG, dG was favored. The above observation was confirmed by the charge transfer rate constant, vertical/adiabatic ionization potential, and electron affinity energy values, as well as the charge and spin distribution analysis. The obtained results indicate that 5',8-cyclo-2'-deoxyguanosine, depending on the C5' atom chirality, can significantly influence the charge migration process through the double helix. The above can be manifested by the slowdown of DNA lesion recognition and removal processes, which can increase the probability of mutagenesis and subsequent pathological processes. With regard to anticancer therapy (radio/chemo), the presence of (5'S)cdG in the structure of formed clustered DNA damage can lead to improvements in cancer treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10135346PMC
http://dx.doi.org/10.3390/antiox12040881DOI Listing

Publication Analysis

Top Keywords

charge transfer
12
dna damage
8
level theory
8
charge
5
influence 5'8-cyclo-2'-deoxyguanosine
4
5'8-cyclo-2'-deoxyguanosine ds-dna
4
ds-dna charge
4
transfer
4
transfer depends
4
depends diastereomeric
4

Similar Publications

An MIL-53(FeNiCo) decorated BiVO photoanode for efficient photoelectrochemical water oxidation.

Dalton Trans

January 2025

Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China.

BiVO is considered as one of the important candidate materials for photoelectrochemical water splitting technology. However, the low efficiency of charge separation and poor kinetics of water oxidation limit its performance in PEC water splitting. In this work, a BiVO/MIL-53(FeNiCo) photoanode was constructed by a facile hydrothermal deposition method, exhibiting excellent water oxidation ability under AM 1.

View Article and Find Full Text PDF

ConspectusThe electronic properties of atomically thin van der Waals (vdW) materials can be precisely manipulated by vertically stacking them with a controlled offset (for example, a rotational offset─i.e., twist─between the layers, or a small difference in lattice constant) to generate moiré superlattices.

View Article and Find Full Text PDF

Constructing a built-in electric field (BIEF) within heterostructures has emerged as a compelling strategy for advancing electrocatalytic oxygen evolution reaction (OER) performance. Herein, the p-n type nanosheet array heterojunction NiP-NCDs-Co(OH)-NF are successfully prepared. The variation in interaction affinity between nitrogen within N-doped carbon dots (NCDs) and Ni/Co induces charge redistribution between Co and Ni in the NiP-NCDs-Co(OH)-NF-3 heterostructure, thereby enhancing the intensity of the BIEF, facilitating electron transfer, and markedly improving OER activity.

View Article and Find Full Text PDF

Triplet-triplet energy transfer (TEnT) is of particular interest in various photochemical, photobiological, and energy science processes. It involves the exchange of spin and energy of electrons between two molecular fragments. Here, quasi-diabatic self-consistent field solutions were used to obtain the diabatic states involved in TEnT.

View Article and Find Full Text PDF

Synthesis of Nonplanar Push-Pull Chromophores with Various Heterocyclic Moieties via [2 + 2] Cycloaddition-Retroelectrocyclization Reaction.

J Org Chem

January 2025

Department of Materials Science and Engineering, Institute of Science Tokyo, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan.

A series of 1,1,4,4-tetracyanobuta-1,3-diene (TCBD) derivatives with various heterocyclic moieties, including pyridine, carbazole, indole, and benzothiadiazole, was newly synthesized through a [2 + 2] cycloaddition-retroelectrocyclization reaction. Symmetric electron-rich 1,3-butadiynes with end-capped heterocyclic substituents were reacted with tetracyanoethylene (TCNE), yielding the target TCBD products in 60-80% yields under ambient or mild heating conditions. The thermal stability and optical and electrochemical properties of both 1,3-butadiyne precursors and the corresponding TCBD derivatives were investigated by using thermogravimetric analysis (TGA), UV-vis spectroscopy, and cyclic voltammetry (CV).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!