Stomatal Responses of Two Drought-Tolerant Barley Varieties with Different ROS Regulation Strategies under Drought Conditions.

Antioxidants (Basel)

Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.

Published: March 2023

Drought stress is a major obstacle to agricultural production. Stomata are central to efforts to improve photosynthesis and water use. They are targets for manipulation to improve both processes and the balance between them. An in-depth understanding of stomatal behavior and kinetics is important for improving photosynthesis and the WUE of crops. In this study, a drought stress pot experiment was performed, and a transcriptome analysis of the leaves of three contrasting, cultivated barley genotypes Lumley (Lum, drought-tolerant), Golden Promise (GP, drought-sensitive), and Tadmor (Tad, drought-tolerant), generated by high-throughput sequencing, were compared. Lum exhibited a different WUE at the leaf and whole-plant levels and had greater CO assimilation, with a higher under drought stress. Interestingly, Lum showed a slower stomatal closure in response to a light-dark transition and significant differences compared to Tad in stomatal response to the exogenous application of ABA, HO, and CaCl. A transcriptome analysis revealed that 24 ROS-related genes were indeed involved in drought response regulation, and impaired ABA-induced ROS accumulation in Lum was identified using ROS and antioxidant capacity measurements. We conclude that different stomatal ROS responses affect stomatal closure in barley, demonstrating different drought regulation strategies. These results provide valuable insight into the physiological and molecular basis of stomatal behavior and drought tolerance in barley.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10135251PMC
http://dx.doi.org/10.3390/antiox12040790DOI Listing

Publication Analysis

Top Keywords

drought stress
12
regulation strategies
8
stomatal behavior
8
transcriptome analysis
8
stomatal closure
8
stomatal
7
drought
7
stomatal responses
4
responses drought-tolerant
4
barley
4

Similar Publications

Oil palm () yield is impacted by abiotic stresses, leading to significant economic losses. To understand the core abiotic stress transcriptome (CAST) of oil palm, we performed RNA-Seq analyses of oil palm leaves subjected to drought, salinity, waterlogging, heat, and cold stresses. A total of 19,834 differentially expressed genes (DEGs) were identified.

View Article and Find Full Text PDF

Ectothermic arthropods, like ticks, are sensitive indicators of environmental changes, and their seasonality plays a critical role in tick-borne disease dynamics in a warming world. Juvenile tick phenology, which influences pathogen transmission, may vary across climates, with longer tick seasons in cooler climates potentially amplifying transmission. However, assessing juvenile tick phenology is challenging in climates where desiccation pressures reduce the time ticks spend seeking blood meals.

View Article and Find Full Text PDF

Take a Deep BReath: Manipulating brassinosteroid homeostasis helps cereals adapt to environmental stress.

Plant Physiol

January 2025

Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland.

Global climate change leads to the increased occurrence of environmental stress (including drought and heat stress) during the vegetative and reproductive stages of cereal crop development. Thus, more attention should be given to developing new cereal cultivars with improved tolerance to environmental stress. However, during the development of new stress-tolerant cereal cultivars, the balance between improved stress responses (which occur at the expense of growth) and plant yield needs to be maintained.

View Article and Find Full Text PDF

Revised method for constructing acoustic vulnerability curves in trees.

Tree Physiol

January 2025

Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Belgium.

During drought, the formation of air bubbles known as embolisms in the water-conducting xylem reduces hydraulic conductivity, which can ultimately result in tree death. Accurately quantifying vulnerability to embolism formation is therefore essential for understanding tree hydraulics. Acoustic emission (AE) analysis offers a non-destructive method to monitor this process, yet the interpretation of captured signals remains debated.

View Article and Find Full Text PDF

The selection of plant genotypes characterized by wellness and stable growth under drought-stress conditions amid ongoing climate change is an important challenge in forest tree breeding. The introduction of molecular markers will enable efficient selection of breeding materials that are resistant to drought stress in forest trees as well as in crop species. Japanese cedar, Cryptomeria japonica, the most dominant forest species in Japan, grows well on mesic sites and is characterized by intraspecific variation in its drought-stress response.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!