AI Article Synopsis

  • The human fallopian tube epithelium (hFTE) is crucial for fertilization and early embryo development, but its small extracellular vesicles (sEVs) remain largely understudied due to previous research limitations.
  • A new microfluidic platform has been developed that allows for efficient hFTE culture and collection of sEVs, revealing 295 specific proteins linked to processes like exocytosis and fertilization for the first time.
  • This study connects the profiles of sEV proteins to hFTE cell-type-specific transcripts, highlighting key proteins in secretory cells that may play a role in the development of high-grade serous ovarian cancers.

Article Abstract

The human fallopian tube epithelium (hFTE) is the site of fertilization, early embryo development, and the origin of most high-grade serous ovarian cancers (HGSOCs). Little is known about the content and functions of hFTE-derived small extracellular vesicles (sEVs) due to the limitations of biomaterials and proper culture methods. We have established a microfluidic platform to culture hFTE for EV collection with adequate yield for mass spectrometry-based proteomic profiling, and reported 295 common hFTE sEV proteins for the first time. These proteins are associated with exocytosis, neutrophil degranulation, and wound healing, and some are crucial for fertilization processes. In addition, by correlating sEV protein profiles with hFTE tissue transcripts characterized using GeoMx Cancer Transcriptome Atlas, spatial transcriptomics analysis revealed cell-type-specific transcripts of hFTE that encode sEVs proteins, among which, FLNA, TUBB, JUP, and FLNC were differentially expressed in secretory cells, the precursor cells for HGSOC. Our study provides insights into the establishment of the baseline proteomic profile of sEVs derived from hFTE tissue, and its correlation with hFTE lineage-specific transcripts, which can be used to evaluate whether the fallopian tube shifts its sEV cargo during ovarian cancer carcinogenesis and the role of sEV proteins in fallopian tube reproductive functions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10135590PMC
http://dx.doi.org/10.3390/bioengineering10040423DOI Listing

Publication Analysis

Top Keywords

fallopian tube
12
proteomic profiling
8
extracellular vesicles
8
sev proteins
8
hfte tissue
8
hfte
7
fallopian
4
profiling fallopian
4
fallopian tube-derived
4
tube-derived extracellular
4

Similar Publications

Study Question: Does a human fallopian tube (HFT) organoid model offer a favourable apical environment for human sperm survival and motility?

Summary Answer: After differentiation, the apical compartment of a new HFT organoid model provides a favourable environment for sperm motility, which is better than commercial media.

What Is Known Already: HFTs are the site of major events that are crucial for achieving an ongoing pregnancy, such as gamete survival and competence, fertilization steps, and preimplantation embryo development. In order to better understand the tubal physiology and tubal factors involved in these reproductive functions, and to improve still suboptimal in vitro conditions for gamete preparation and embryo culture during IVF, we sought to develop an HFT organoid model from isolated adult stem cells to allow spermatozoa co-culture in the apical compartment.

View Article and Find Full Text PDF

Study Objective: We present the results of the first feasibility and safety study of a novel multi-modality falloposcope, in 19 volunteers. The falloposcope incorporated multispectral fluorescence imaging (MFI) and optical coherence tomography (OCT) for evaluation of the fallopian tubes (FT).

Methods: Nineteen females undergoing elective salpingectomy were recruited in this IRB-approved study.

View Article and Find Full Text PDF

A desmoplastic small round cell tumor (DSRCT) presented in a 13-year-old female with an acute abdomen due to torsion of a fallopian tube cyst. She was found to have an incidental 2 cm pedunculated, solid, and multicystic mass attached to the pelvic floor on laparoscopy. The neoplasm had a variably myxoid and spindle cell pattern with nests and cords of small cells, forming pseudocysts, and true cysts lined by ciliated epithelium which were PAX-8+ and ER+/PR+.

View Article and Find Full Text PDF

Epigenetic therapies facilitate transcription of immunogenic repetitive elements that cull cancer cells through 'viral mimicry' responses. Paradoxically, cancer-initiating events also facilitate transcription of repetitive elements. Contributions of repetitive element transcription towards cancer initiation, and the mechanisms by which cancer cells evade lethal viral mimicry responses during tumor initiation remain poorly understood.

View Article and Find Full Text PDF

Ovarian cancer (OC) is a gynecologic disease characterized by the uncontrolled growth and proliferation of abnormal cells in the ovaries, fallopian tubes, or peritoneum. Emerging evidence has shown the pivotal role of non-coding RNAs (ncRNAs), such as miRNAs, in driving the pathogenesis of OC. miRNAs are recognized as small ncRNAs that play critical roles in regulating gene expression in normal development and in disease states, including OC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!