Large hospitals can be complex, with numerous discipline and subspecialty settings. Patients may have limited medical knowledge, making it difficult for them to determine which department to visit. As a result, visits to the wrong departments and unnecessary appointments are common. To address this issue, modern hospitals require a remote system capable of performing intelligent triage, enabling patients to perform self-service triage. To address the challenges outlined above, this study presents an intelligent triage system based on transfer learning, capable of processing multilabel neurological medical texts. The system predicts a diagnosis and corresponding department based on the patient's input. It utilizes the triage priority (TP) method to label diagnostic combinations found in medical records, converting a multilabel problem into a single-label one. The system considers disease severity and reduces the "class overlapping" of the dataset. The BERT model classifies the chief complaint text, predicting a primary diagnosis corresponding to the complaint. To address data imbalance, a composite loss function based on cost-sensitive learning is added to the BERT architecture. The study results indicate that the TP method achieves a classification accuracy of 87.47% on medical record text, outperforming other problem transformation methods. By incorporating the composite loss function, the system's accuracy rate improves to 88.38% surpassing other loss functions. Compared to traditional methods, this system does not introduce significant complexity, yet substantially improves triage accuracy, reduces patient input confusion, and enhances hospital triage capabilities, ultimately improving the patient's medical experience. The findings could provide a reference for intelligent triage development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10136349PMC
http://dx.doi.org/10.3390/bioengineering10040420DOI Listing

Publication Analysis

Top Keywords

intelligent triage
16
triage
9
triage priority
8
transfer learning
8
diagnosis corresponding
8
composite loss
8
loss function
8
medical
5
system
5
disease-prediction protocol
4

Similar Publications

Objective: Extracorporeal membrane oxygenation (ECMO) is among the most resource-intensive therapies in critical care. The COVID-19 pandemic highlighted the lack of ECMO resource allocation tools. We aimed to develop a continuous ECMO risk prediction model to enhance patient triage and resource allocation.

View Article and Find Full Text PDF

Objective: Evaluate the accuracy and reliability of various generative artificial intelligence (AI) models (ChatGPT-3.5, ChatGPT-4.0, T5, Llama-2, Mistral-Large, and Claude-3 Opus) in predicting Emergency Severity Index (ESI) levels for pediatric emergency department patients and assess the impact of medically oriented fine-tuning.

View Article and Find Full Text PDF

In resource-constrained countries like India, mammography-based breast screening is challenging to implement. This state-wide study, funded by the Government of Punjab, evaluated the use of Thermalytix, a low-cost, radiation-free AI tool, for breast cancer screening. Community health workers, trained to raise awareness, mobilized women aged 30 and above for screening.

View Article and Find Full Text PDF

Ovarian lesions are common and often incidentally detected. A critical shortage of expert ultrasound examiners has raised concerns of unnecessary interventions and delayed cancer diagnoses. Deep learning has shown promising results in the detection of ovarian cancer in ultrasound images; however, external validation is lacking.

View Article and Find Full Text PDF

In 2019, COVID-19 began one of the greatest public health challenges in history, reaching pandemic status the following year. Systems capable of predicting individuals at higher risk of progressing to severe forms of the disease could optimize the allocation and direction of resources. In this work, we evaluated the performance of different Machine Learning algorithms when predicting clinical outcomes of patients hospitalized with COVID-19, using clinical data from hospital admission alone.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!