Large hospitals can be complex, with numerous discipline and subspecialty settings. Patients may have limited medical knowledge, making it difficult for them to determine which department to visit. As a result, visits to the wrong departments and unnecessary appointments are common. To address this issue, modern hospitals require a remote system capable of performing intelligent triage, enabling patients to perform self-service triage. To address the challenges outlined above, this study presents an intelligent triage system based on transfer learning, capable of processing multilabel neurological medical texts. The system predicts a diagnosis and corresponding department based on the patient's input. It utilizes the triage priority (TP) method to label diagnostic combinations found in medical records, converting a multilabel problem into a single-label one. The system considers disease severity and reduces the "class overlapping" of the dataset. The BERT model classifies the chief complaint text, predicting a primary diagnosis corresponding to the complaint. To address data imbalance, a composite loss function based on cost-sensitive learning is added to the BERT architecture. The study results indicate that the TP method achieves a classification accuracy of 87.47% on medical record text, outperforming other problem transformation methods. By incorporating the composite loss function, the system's accuracy rate improves to 88.38% surpassing other loss functions. Compared to traditional methods, this system does not introduce significant complexity, yet substantially improves triage accuracy, reduces patient input confusion, and enhances hospital triage capabilities, ultimately improving the patient's medical experience. The findings could provide a reference for intelligent triage development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10136349 | PMC |
http://dx.doi.org/10.3390/bioengineering10040420 | DOI Listing |
JAMIA Open
February 2025
Artificial Intelligence (AI) for Health Institute (AIHealth), Washington University in St Louis, St Louis, MO 63130, United States.
Objective: Extracorporeal membrane oxygenation (ECMO) is among the most resource-intensive therapies in critical care. The COVID-19 pandemic highlighted the lack of ECMO resource allocation tools. We aimed to develop a continuous ECMO risk prediction model to enhance patient triage and resource allocation.
View Article and Find Full Text PDFPediatr Emerg Care
January 2025
University of California Davis School of Medicine, Sacramento, CA.
Objective: Evaluate the accuracy and reliability of various generative artificial intelligence (AI) models (ChatGPT-3.5, ChatGPT-4.0, T5, Llama-2, Mistral-Large, and Claude-3 Opus) in predicting Emergency Severity Index (ESI) levels for pediatric emergency department patients and assess the impact of medically oriented fine-tuning.
View Article and Find Full Text PDFNPJ Digit Med
January 2025
Department of Health and Family Welfare, Government of Punjab, Chandigarh, India.
In resource-constrained countries like India, mammography-based breast screening is challenging to implement. This state-wide study, funded by the Government of Punjab, evaluated the use of Thermalytix, a low-cost, radiation-free AI tool, for breast cancer screening. Community health workers, trained to raise awareness, mobilized women aged 30 and above for screening.
View Article and Find Full Text PDFNat Med
January 2025
Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden.
Ovarian lesions are common and often incidentally detected. A critical shortage of expert ultrasound examiners has raised concerns of unnecessary interventions and delayed cancer diagnoses. Deep learning has shown promising results in the detection of ovarian cancer in ultrasound images; however, external validation is lacking.
View Article and Find Full Text PDFFront Artif Intell
December 2024
School of Medicine, University of Brasilia, Brasilia, Brazil.
In 2019, COVID-19 began one of the greatest public health challenges in history, reaching pandemic status the following year. Systems capable of predicting individuals at higher risk of progressing to severe forms of the disease could optimize the allocation and direction of resources. In this work, we evaluated the performance of different Machine Learning algorithms when predicting clinical outcomes of patients hospitalized with COVID-19, using clinical data from hospital admission alone.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!