Isolation of the B Cell Immune Synapse for Proteomic Analysis.

Methods Mol Biol

Institute of Biomedicine, MediCity Research Laboratories, and InFLAMES Research Flagship, University of Turku, Turku, Finland.

Published: May 2023

Recent technical developments have fueled increasing utilization of proteomics to gain new insights into various aspects of cellular behavior. In this chapter, we describe a method to specifically isolate immune synapses from mouse primary B cells. The method utilizes antibody-coated magnetic beads to induce the formation of the immune synapses and describes a protocol for the extraction of the cell-bead adhesions for mass spectrometry analysis. Finally, this method enables unveiling the large-scale protein content of the immune synapse.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-3135-5_25DOI Listing

Publication Analysis

Top Keywords

immune synapse
8
immune synapses
8
isolation cell
4
immune
4
cell immune
4
synapse proteomic
4
proteomic analysis
4
analysis technical
4
technical developments
4
developments fueled
4

Similar Publications

The Role of Glial Cells in the Pathophysiology of Epilepsy.

Cells

January 2025

Institute of Health Sciences, Department of Neuroscience, Acibadem Mehmet Ali Aydinlar University, 34684 Istanbul, Türkiye.

Epilepsy is a chronic neurological disorder marked by recurrent seizures, significantly impacting individuals worldwide. Current treatments are often ineffective for a third of patients and can cause severe side effects, necessitating new therapeutic approaches. Glial cells, particularly astrocytes, microglia, and oligodendrocytes, are emerging as crucial targets in epilepsy management.

View Article and Find Full Text PDF

Retinal ganglion cells (RGCs) generally fail to regenerate axons, resulting in irreversible vision loss after optic nerve injury. While many studies have shown that modulating specific genes can enhance RGCs survival and promote optic nerve regeneration, inducing long-distance axon regeneration through single-gene manipulation remains challenging. Nevertheless, combined multi-gene therapies have proven effective in significantly enhancing axonal regeneration.

View Article and Find Full Text PDF

Ferroelectric HfZrO (HZO) capacitors have been extensively explored for in-memory computing (IMC) applications due to their nonvolatility and back-end-of-line (BEOL) compatible process. Several IMC approaches using resistance and capacitance states in ferroelectric HZO have been proposed for vector-matrix multiplication (VMM), but previous approaches suffer from limited accuracy and reliability. In this work, we propose a promising approach centered on the remanent polarization (P) switching of binary ferroelectric HZO capacitor synapses.

View Article and Find Full Text PDF

This article aims to develop and validate a pathological prognostic model for predicting prognosis in patients with isocitrate dehydrogenase (IDH)-mutant gliomas and reveal the biological underpinning of the prognostic pathological features. The pathomic model was constructed based on whole slide images (WSIs) from a training set ( = 486) and evaluated on internal validation set ( = 209), HPPH validation set ( = 54), and TCGA validation set ( = 352). Biological implications of PathScore and individual pathomic features were identified by pathogenomics set ( = 100).

View Article and Find Full Text PDF

Nonapoptotic caspase-3 guides C1q-dependent synaptic phagocytosis by microglia.

Nat Commun

January 2025

Department of Translational Neurobiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, 187-8502, Japan.

Caspases are known to mediate neuronal apoptosis during brain development. However, here we show that nonapoptotic activation of caspase-3 at presynapses drives microglial synaptic phagocytosis. Real-time observation and spatiotemporal manipulation of synaptic caspase-3 in the newly established, mouse-derived culture system demonstrate that increased neuronal activity triggers localized presynaptic caspase-3 activation, facilitating synaptic tagging by complements.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!