Physical interfaces mediate interactions between multiple types of cells. Despite the importance of such interfaces to the cells' function, their high-resolution optical imaging has been typically limited due to poor alignment of the interfaces relative to the optical plane of imaging. Here, we present a simple and robust method to align cell-cell interfaces in parallel to the coverslip by adhering the interacting cells to two opposing coverslips and bringing them into contact in a controlled and stable fashion. We demonstrate aberration-free high-resolution imaging of interfaces between live T cells and antigen-presenting cells, known as immune synapses, as an outstanding example. Imaging methods may include multiple diffraction-limited and super-resolution microscopy techniques (e.g., bright-field, confocal, STED, and dSTORM). Thus, our simple and widely compatible approach allows imaging with high- and super-resolution the intricate structure and molecular organization within a variety of cell-cell interfaces.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-3135-5_10 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!