We previously showed that elevated TYMS exhibits oncogenic properties and promotes tumorigenesis after a long latency, suggesting cooperation with sequential somatic mutations. Here we report the cooperation of ectopic expression of human TYMS with loss of Ink4a/Arf, one of the most commonly mutated somatic events in human cancer. Using an hTS/Ink4a/Arf genetically engineered mouse model we showed that deregulated TYMS expression in Ink4a/Arf null background accelerates tumorigenesis and metastasis. In addition, tumors from TYMS-expressing mice were associated with a phenotype of genomic instability including enhanced double strand DNA damage, aneuploidy and loss of G1/S checkpoint. Downregulation of TYMS in vitro decreased cell proliferation and sensitized tumor cells to antimetabolite chemotherapy. In addition, depletion of TYMS in vivo by TYMS shRNA reduced tumor incidence, delayed tumor progression and prolonged survival in hTS/Ink4a/Arf mice. Our data shows that activation of TYMS in Ink4a/Arf null background enhances uncontrolled cell proliferation and tumor growth, supporting the development of new agents and strategies targeting TYMS to delay tumorigenesis and prolong survival.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10244171 | PMC |
http://dx.doi.org/10.1038/s41388-023-02694-7 | DOI Listing |
Oncogene
June 2023
Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, 32610, USA.
We previously showed that elevated TYMS exhibits oncogenic properties and promotes tumorigenesis after a long latency, suggesting cooperation with sequential somatic mutations. Here we report the cooperation of ectopic expression of human TYMS with loss of Ink4a/Arf, one of the most commonly mutated somatic events in human cancer. Using an hTS/Ink4a/Arf genetically engineered mouse model we showed that deregulated TYMS expression in Ink4a/Arf null background accelerates tumorigenesis and metastasis.
View Article and Find Full Text PDFJCI Insight
April 2023
Department of Anatomy and Cell Biology.
Although thymidylate synthase (TYMS) inhibitors have served as components of chemotherapy regimens, the currently available inhibitors induce TYMS overexpression or alter folate transport/metabolism feedback pathways that tumor cells exploit for drug resistance, limiting overall benefit. Here we report a small molecule TYMS inhibitor that i) exhibited enhanced antitumor activity as compared with current fluoropyrimidines and antifolates without inducing TYMS overexpression, ii) is structurally distinct from classical antifolates, iii) extended survival in both pancreatic xenograft tumor models and an hTS/Ink4a/Arf null genetically engineered mouse tumor model, and iv) is well tolerated with equal efficacy using either intraperitoneal or oral administration. Mechanistically, we verify the compound is a multifunctional nonclassical antifolate, and using a series of analogs, we identify structural features allowing direct TYMS inhibition while maintaining the ability to inhibit dihydrofolate reductase.
View Article and Find Full Text PDFStem Cell Reports
June 2018
Centre de Recherche du CHU Ste-Justine, 3175 Côte Sainte-Catherine, Montréal, Québec H3T 1C5, Canada; Department of Pharmacology and Physiology, Université de Montréal, Montréal, Québec, Canada. Electronic address:
Brain neurogenesis is severely impaired following exposure to ionizing radiation (IR). We and others have shown that the expression of the tumor suppressor gene p16INK4a is increased in tissues exposed to IR and thus hypothesized that its expression could limit neurogenesis in the irradiated brain. Here, we found that exposure to IR leads to persistent DNA damage and the expression of p16INK4a in the hippocampus and subventricular zone regions.
View Article and Find Full Text PDFAging Cell
April 2018
Tumor Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
Cellular senescence is a damage response aimed to orchestrate tissue repair. We have recently reported that cellular senescence, through the paracrine release of interleukin-6 (IL6) and other soluble factors, strongly favors cellular reprogramming by Oct4, Sox2, Klf4, and c-Myc (OSKM) in nonsenescent cells. Indeed, activation of OSKM in mouse tissues triggers senescence in some cells and reprogramming in other cells, both processes occurring concomitantly and in close proximity.
View Article and Find Full Text PDFNeuro Oncol
February 2018
Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan.
Background: Glioblastomas have been shown to rely on glycolysis as an energy source. However, recent evidence suggests that at least a subset of glioma cells with stem cell-like properties can thrive on oxidative phosphorylation. It remains unclear whether both metabolic phenotypes support tumor propagation, if they are independent, and how stable they are.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!