Functional significance of vertical free moment for generation of human bipedal walking.

Sci Rep

Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.

Published: April 2023

In human bipedal walking, the plantar surface of the foot is in contact with the floor surface, so that a vertical free moment (VFM), a torque about a vertical axis acting at the centre-of-pressure due to friction between the foot and the ground, is generated and applied to the foot. The present study investigated the functional significance of the VFM in the mechanics and evolution of human bipedal walking by analysing kinematics and kinetics of human walking when the VFM is selectively eliminated using point-contact shoes. When the VFM was selectively eliminated during walking, the thorax and pelvis axially rotated in-phase, as opposed to normal out-of-phase rotation. The amplitudes of the axial rotation also significantly increased, indicating that the VFM greatly contributes to stable and efficient bipedal walking. However, such changes in the trunk movement occurred only when arm swing was restricted, suggesting that the VFM is critical only when arm swing is restrained. Therefore, the human plantigrade foot capable of generating large VFM is possibly adaptive for bipedal walking with carrying food, corroborating with the so-called provisioning hypothesis that food carrying in the early hominins is a selective pressure for the evolution of human bipedalism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10140179PMC
http://dx.doi.org/10.1038/s41598-023-34153-4DOI Listing

Publication Analysis

Top Keywords

bipedal walking
20
human bipedal
12
functional significance
8
vertical free
8
free moment
8
evolution human
8
vfm selectively
8
selectively eliminated
8
arm swing
8
walking
7

Similar Publications

Human-Inspired Gait and Jumping Motion Generation for Bipedal Robots Using Model Predictive Control.

Biomimetics (Basel)

January 2025

Graduate School of Information, Production and Systems, Waseda University, 2-7 Hibikino, Wakamatsu-ku, Kitakyushu 808-0135, Japan.

In recent years, humanoid robot technology has been developing rapidly due to the need for robots to collaborate with humans or replace them in various tasks, requiring them to operate in complex human environments and placing high demands on their mobility. Developing humanoid robots with human-like walking and hopping abilities has become a key research focus, as these capabilities enable robots to move and perform tasks more efficiently in diverse and unpredictable environments, with significant applications in daily life, industrial operations, and disaster rescue. Currently, methods based on hybrid zero dynamics and reinforcement learning have been employed to enhance the walking and hopping capabilities of humanoid robots; however, model predictive control (MPC) presents two significant advantages: it can adapt to more complex task requirements and environmental conditions, and it allows for various walking and hopping patterns without extensive training and redesign.

View Article and Find Full Text PDF

Our previous study revealed the benefits of chronic melatonin intake on dynamic postural imbalance and poor walking capacity induced by multiple sclerosis but its impact on muscle weakness and poor manual dexterity related to this disease has not yet been explored. The objective of the current study was to investigate the effectiveness of 12-week melatonin supplementation on motor skills (i.e.

View Article and Find Full Text PDF

Ankle push-off is important for efficient, human-like walking, and many prosthetic devices mimic push-off using motors or elastic elements. The knee is extended throughout the stance phase and begins to buckle just before push-off, with timing being crucial. However, the exact mechanisms behind this buckling are still unclear.

View Article and Find Full Text PDF

Gibbons, a type of lesser ape, are brachiators but also walk bipedally and without forelimb assistance, not only on the ground but also on tree branches. The arboreal bipedal walking strategy of the gibbons has been studied in previous studies in relation to two-dimensional (2D) kinematic analysis. However, because tree branches and the ground differ greatly in width, leading to a constrained foot contact point on the tree branches, gibbons must adjust their 3D joint motions of trunk and hindlimb on the tree branches.

View Article and Find Full Text PDF

Acetabular orientation, pelvic shape, and the evolution of hominin bipedality.

J Hum Evol

January 2025

Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO 65212, USA.

Hominin pelvic form differs dramatically from that of other primates by having more laterally facing iliac blades, a wider sacrum, and a larger, transversely broad pelvic inlet. The orientation of the acetabulum may also differ, plausibly related to differences in load transmission during upright posture and habitual bipedal locomotion, which may, in turn, affect overall pelvic geometry. We compared acetabular orientation in humans, a phylogenetically broad sample of extant anthropoid primates, and fossil hominins including Australopithecus afarensis (A.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!