Fox transcription factor AccGRF1 in response to glyphosate stress in Apis cerana cerana.

Pestic Biochem Physiol

State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, Shandong, China. Electronic address:

Published: May 2023

Glyphosate is an herbicide commonly used in agriculture, and its widespread use has adversely affected the survival of nontarget organisms. Among these organisms, bees in particular are important pollinators, and declining bee populations have severely affected crop yields around the world. However, the molecular mechanism by which glyphosate harms bees remains unclear. In our experiment, we screened and cloned a glyphosate-induced gene in Apis cerana cerana (A. c. cerana) and named glyphosate response factor 1 (AccGRF1). Sequence analysis showed that AccGRF1 contains a winged-helix DNA binding domain, which suggests that it belongs to the Forkhead box (Fox) protein family. qRT-PCR and heterologous expression in Escherichia coli and yeast showed that AccGRF1 can respond to glyphosate and oxidative stress. After AccGRF1 knockdown by means of RNA interference (RNAi), the resistance of A. c. cerana to glyphosate stress improved. The results suggested that AccGRF1 is involved in A. c. cerana glyphosate stress tolerance. This study reveals the functions of Fox transcription factors in response to glyphosate stress and provides molecular insights into the regulation of glyphosate responses in honeybees.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pestbp.2023.105419DOI Listing

Publication Analysis

Top Keywords

glyphosate stress
16
cerana cerana
12
cerana glyphosate
12
glyphosate
9
fox transcription
8
factor accgrf1
8
response glyphosate
8
apis cerana
8
cerana
7
accgrf1
6

Similar Publications

A biomarkers study of human skin fibroblasts exposition to glyphosate-based herbicide using an untargeted and targeted metabolomics approach.

Chemosphere

December 2024

Universidade Federal de Minas Gerais, Instituto de Ciências Exatas, Departamento de Química. Av. Antônio Carlos, 6627, Belo Horizonte, Minas Gerais, Brazil. Electronic address:

Metabolomics is a valuable tool to assess glyphosate exposure and its potential impact on human health. However, few studies have used metabolomics to evaluate human exposure to glyphosate or glyphosate-based herbicides (GBHs). In this study, an untargeted and targeted metabolomics approach was applied to human skin fibroblasts exposed to the GBH Roundup (GLYP-R).

View Article and Find Full Text PDF

Transcriptomics, metabolomics and proteomics analyses reveal glyphosate tolerance mechanism in red swamp crayfish Procambarus clarkii.

Sci Total Environ

December 2024

Key Laboratory of Integrated Rice-Fish Farming Ecosystem, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Aquaculture Engineering and Technology Research Centre, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China.

Glyphosate (Gly), the world's most widely used herbicide in agriculture, can poison the red swamp crayfish, Procambarus clarkii, via spray drift and surface runoff into surface waters. However, there is a paucity of research on the mechanisms that affect crayfish tolerance to Gly at typical environmental concentrations. To address this research gap, we investigated the effects of Gly stress (0, 6, 12, 24, and 72 h) at different concentrations (0, 1.

View Article and Find Full Text PDF

The combined effect of environmentally relevant doses of glyphosate and high temperature: An integrated and multibiomarker approach to delineate redox status and behavior in Danio rerio.

Comp Biochem Physiol C Toxicol Pharmacol

December 2024

Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Laboratório de Toxicologia Aquática, Universidade Federal de Santa Maria, Santa Maria, RS 97105-900, Brazil. Electronic address:

Glyphosate, a pesticide commonly found in aquatic ecosystems, affects this habitat and nontarget organisms such as fish. The increase in water temperature, linked to factors such as climate change, poses a considerable threat. Despite extensive ecotoxicological research, we still do not know the real individual and specific consequences of continued exposure to glyphosate and high temperatures, simulating a scenario where the aquatic environment remains contaminated and temperatures continue to rise.

View Article and Find Full Text PDF

Synthetic pesticides are known for their toxic effects on non-target aquatic organisms. However, little is known about their effects when present in mixtures, which are closer to realistic exposure scenarios. Therefore, this study evaluates the toxicity of pesticides such as diuron, atrazine and glyphosate, individually and in combination, in zebrafish embryos, investigating their mechanisms of oxidative stress.

View Article and Find Full Text PDF

Herbicides pose a threat to various non-target organisms, including fish. A widely used herbicide, glyphosate, and its main breakdown product, aminomethylphosphonic acid (AMPA), are quite ubiquitous in freshwater systems. The aim of this work was to analyze changes in the relative abundance of hepatic proteins participating in the biotransformation and response to chemical stress in adult zebrafish Danio rerio exposed to environmentally relevant concentrations of glyphosate (100 μg/L), AMPA (100 μg/L), and their mixture (50 μg/L + 50 μg/L) for two weeks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!