Linoleic acid from the endophytic fungus Diaporthe sp. HT-79 inhibits the growth of Xanthomonas citri subsp. citri by destructing the cell membrane and producing reactive oxygen species (ROS).

Pestic Biochem Physiol

National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou 341000, China; South China Botanical Garden, Chinese Academy of Science, Guangzhou, 510650, China. Electronic address:

Published: May 2023

Citrus canker disease caused by Xanthomonas citri subsp. citri (Xac) severely influences the quality and quantity of citrus fruits. The current management of this disease mainly relies on the application of copper-associated chemicals, which poses a threat to human health and the environment. The present study isolated an endophytic fungus HT-79 from the healthy navel orange tree, whose crude fermentation product significantly inhibited the growth of Xac. The strain HT-79 was identified as a species of the Diaporthe genus. The petroleum ether extract (PEE) of the crude fermentation product of HT-79 exhibited remarkable activity against Xac with a MIC (minimum inhibitory concentration) value of 0.0625 mg/mL, significantly better than the positive control CuSO (MIC = 0.125 mg/mL). Bioassay-guided isolation of PEE resulted in the discovery of one highly potent anti-Xac subfraction, namely fraction 5 (MIC = 0.0156 mg/mL). Gas chromatography-mass spectrometry (GC-MS) analysis revealed that fraction 5 mainly consisted of palmitic acid (18.17%), ethyl palmitate (15.66%), linoleic acid (6.80%), oleic acid (18.32%), ethyl linoleate (21.58%), ethyl oleate (15.87%), and ethyl stearate (3.60%). Among these seven compounds, linoleic acid (MIC = 0.0078 mg/mL) was found to be the most potent against Xac, followed by oleic acid (MIC = 0.0156 mg/mL), while all others were less pronounced than CuSO. Linoleic acid highly inhibited the growth of Xac via the destruction of the cell membrane and overproduction of reactive oxygen species (ROS). A preliminary in vivo experiment revealed that linoleic acid was effective in the control of citrus canker disease.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pestbp.2023.105423DOI Listing

Publication Analysis

Top Keywords

linoleic acid
20
endophytic fungus
8
xanthomonas citri
8
citri subsp
8
subsp citri
8
cell membrane
8
reactive oxygen
8
oxygen species
8
species ros
8
citrus canker
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!