AI Article Synopsis

  • Maternal physiological hypercholesterolemia (MPH) supports fetal development, while supraphysiological hypercholesterolemia (MSPH) can lead to serious complications like endothelial dysfunction in both mothers and fetuses.
  • Small extracellular vesicles (sEVs) isolated from the blood of women with MSPH were studied to understand their impact on endothelial cell function in areas such as angiogenesis and nitric oxide production.
  • The research found that sEVs from MSPH women increased in concentration and negatively affected endothelial cell functions, potentially worsening endothelial dysfunction associated with high cholesterol levels.

Article Abstract

Unlabelled: Maternal physiological hypercholesterolemia MPH, maternal total cholesterol (TC) levels at term of pregnancy ≤280 mg/dL) occurs to assure fetal development. Maternal supraphysiological hypercholesterolemia (MSPH, TC levels >280 mg/dL) is a pathological condition associated with maternal, placental, and fetal endothelial dysfunction and early neonatal atherosclerosis development. Small extracellular vesicles (sEVs) are delivered to the extracellular space by different cells, where they modulate cell functions by transporting active signaling molecules, including proteins and miRNA.

Aim: To determine whether sEVs from MSPH women could alter the function of endothelial cells (angiogenesis, endothelial activation and nitric oxide synthesis capacity).

Methods: This study included 24 Chilean women (12 MPH and 12 MSPH). sEVs were isolated from maternal plasma and characterized by sEV markers (CD9, Alix and HSP70), nanoparticle tracking analysis, transmission electron microscopy, and protein and cholesterol content. The endothelial cell line HMEC-1 was used to determine the uptake of labeled sEVs and the effects of sEVs on cell viability, endothelial tube formation, endothelial cell activation, and endothelial nitric oxide expression and function.

Results: In MSPH women, the plasma concentration of sEVs was increased compared to that in MPH women. MSPH-sEVs were highly taken up by HMEC-1 cells and reduced angiogenic capacity and the expression and activity of eNOS without changing cell viability or endothelial activation compared to MPH-sEVs.

Conclusion: sEVs from MSPH women impair angiogenesis and nitric oxide synthesis in endothelial cells, which could contribute to MSPH-associated endothelial dysfunction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vph.2023.107174DOI Listing

Publication Analysis

Top Keywords

endothelial cell
12
msph women
12
nitric oxide
12
endothelial
11
small extracellular
8
extracellular vesicles
8
maternal supraphysiological
8
supraphysiological hypercholesterolemia
8
endothelial dysfunction
8
sevs msph
8

Similar Publications

Pulmonary hypertension (PH) increases the mortality of preterm infants with bronchopulmonary dysplasia (BPD). There are no curative therapies for this disease. Lung endothelial carnitine palmitoyltransferase 1a (Cpt1a), the rate-limiting enzyme of the carnitine shuttle system, is reduced in a rodent model of BPD.

View Article and Find Full Text PDF

Protocol to generate a 3D atherogenesis-on-chip model for studying endothelial-macrophage crosstalk in atherogenesis.

STAR Protoc

January 2025

Department of Experimental Vascular Medicine, Amsterdam UMC, location AMC, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, the Netherlands; Laboratory of Angiogenesis and Vascular Metabolism, VIB-KU Leuven Center for Cancer Biology, VIB, 3000 Leuven, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), 3000 Leuven, Belgium. Electronic address:

The endothelium is the gatekeeper of vessel health, and its dysfunction is pivotal in driving atherogenesis. Here, we present a protocol to replicate endothelial-macrophage crosstalk during atherogenesis, called the "atherogenesis-on-chip" model, based on the Emulate dual-channel perfusion system. We describe a model for studying endothelial-macrophage interactions during atherogenesis in human aortic endothelial cells and human macrophages using qPCR and secretome analysis, fluorescence microscopy, and flow cytometry.

View Article and Find Full Text PDF

Angiogenesis begins as endothelial cells migrate, forming a sprouting tip and subsequent growth-rich stalk cells. Here, we present a protocol for transcriptomic and epigenomic analyses of tip-like cells in cultured endothelial cells. We describe steps for stimulating human umbilical vein endothelial cells (HUVECs) with vascular endothelial cell growth factor (VEGF) to generate tip-like cells.

View Article and Find Full Text PDF

Protocol for differentiating hematopoietic progenitor cells from human pluripotent stem cells in chemically defined monolayer culture.

STAR Protoc

January 2025

State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China. Electronic address:

Human pluripotent stem cells (hPSCs) provide a powerful platform for generating hematopoietic progenitor cells (HPCs) and investigating hematopoietic development. Here, we present a protocol for maintaining hPSCs and inducing their differentiation into HPCs through the endothelial-to-hematopoietic transition (EHT) on vitronectin-coated plates. We outline steps for evaluating the efficiency of HPC generation and assessing their potential to differentiate into various hematopoietic lineages.

View Article and Find Full Text PDF

Cadmium (Cd) is a toxic heavy metal which induces vascular disorders. Previous studies suggest that Cd in the bloodstream affects vascular endothelial cells (ECs), potentially contributing to vascular-related diseases. However, the molecular mechanisms of effects of Cd on ECs remain poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!