Monolayer water can be formed under extreme confinement and will present distinctive thermodynamic properties compared with bulk water. In this work, we perform molecular dynamics simulations to study the thermal conductivity of monolayer water confined in graphene channels, finding an unexpected way of thermal conductivity of monolayer water dependent on its number density, which has a close correlation with the structure of water. The monolayer water is in an amorphous state, and its thermal conductivity increases linearly with the area density when the water density is low at first. Then, the thermal conductivity increases as the number density of water rises, which is attributed to the formation of a crystal structure and the reduction of crystal defects as the number of water molecules increases. After reaching the zenith, the thermal conductivity decreases rapidly owing to the formation of a wrinkle structure of monolayer water with excessive water molecules, which weakens the phonon dispersion. Moreover, we further investigate the remarkable effects of the channel height on both the structure and thermal conductivity of monolayer water. In summary, this study demonstrates the close connection between the thermal conductivity of monolayer water and its structure, contributing to not only expanding the understanding of the thermodynamic property of nanoconfined water but also benefiting the engineering applications for nanofluidics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpcb.2c07506 | DOI Listing |
Heliyon
January 2025
Department of Physics, University of Rajshahi, Rajshahi, 6205, Bangladesh.
The present study focuses on the ground state mechanical, acoustic, thermodynamic and electronic transport properties of NaSbS polymorphs using the density functional theory (DFT) and semi-classical Boltzmann transport theory. The mechanical stability of the polymorphs is affirmed by the calculated elastic tensor. The calculated elastic properties asserted that all the polymorphs exhibit soft, brittle, anisotropic nature containing dominant covalent bonding.
View Article and Find Full Text PDFInt J Thermophys
January 2024
Material Measurement Laboratory, Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, CO 80305, USA.
The thermal conductivity of liquid -1,2-dichloroethene (R-1130(E)) was measured at temperatures ranging from 240 K to 340 K and pressures up to 25 MPa using a transient hot-wire instrument. A total of 447 thermal conductivity data points were measured along six isotherms. Each isotherm includes data at nine pressures, which were chosen to be at equal density increments starting at a pressure of 0.
View Article and Find Full Text PDFMater Horiz
January 2025
State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, People's Republic of China.
Given extremely high porosity, aerogels have demonstrated remarkable advantages in serving as thermal insulation and wave-transparent materials. Unfortunately, their practical applications are greatly confined by their inherent fragility. The recent emergence of polymer aerogels presents an ideal platform for the development of flexible aerogel films.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States.
Biogenic-based foam, renowned for its sustainable and eco-friendly properties, is emerging as a promising thermal insulating material with the potential to significantly enhance energy efficiency and sustainability in building applications. However, its relatively high thermal conductivity, large-pore configurations, and energy-intensive manufacturing processes hinder its widespread use. Here, we report on the scalable, one-pot synthesis of biogenic foams achieved by integrating recycled paper pulp and in situ nanoporous silica formation, resulting in a hierarchical structure comprising both micropores and nanopores.
View Article and Find Full Text PDFACS Nano
January 2025
Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
Radiative cooling is an emerging zero-energy-consumption technology for human body cooling in outdoor scenarios during hot seasons. However, existing radiative cooling textiles are limited by low intrinsic cooling power, high hydrophobicity, and heat-insulating properties, which seriously impede a satisfying cooling effect, perspiration-wicking, and heat dissipation, thus limiting human thermal comfort in practical situations. Here, we developed a radiative cooling meta-fabric that was integrated with high perspiration-wicking and thermal conduction capacity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!