Mental disorders are rapidly increasing each year and have become a major challenge affecting the social and financial well-being of individuals. There is a need for phenotypic characterization of psychiatric disorders with biomarkers to provide a rich signature for Major Depressive Disorder, improving the understanding of the pathophysiological mechanisms underlying these mental disorders. This comprehensive review focuses on depression and relapse detection modalities such as self-questionnaires, audiovisuals, and EEG, highlighting noteworthy publications in the last ten years. The article concentrates on the literature that adopts machine learning by audiovisual and EEG signals. It also outlines preprocessing, feature extraction, and public datasets for depression detection. The review concludes with recommendations that will help improve the reliability of developed models and the determinism of computational intelligence-based systems in psychiatry. To the best of our knowledge, this survey is the first comprehensive review on depression and relapse prediction by self-questionnaires, audiovisual, and EEG-based approaches. The findings of this review will serve as a useful and structured starting point for researchers studying clinical and non-clinical depression recognition and relapse through machine learning-based approaches.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2023.106741DOI Listing

Publication Analysis

Top Keywords

depression relapse
12
comprehensive review
12
machine learning
8
clinical non-clinical
8
non-clinical depression
8
depression recognition
8
relapse prediction
8
audiovisual eeg
8
mental disorders
8
depression
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!