The self-standing graphene membranes are considered as ideal electrode materials for supercapacitors. However, maintaining highly regularized and uniform graphene membranes with satisfied electrochemical performance is still a challenge. Herein, with the chelation of metal cation and the radial shear force introduced by high-speed spinning, the uniform interlayer channels and shrunken cracks between adjacent nanosheets can be achieved in the metal-intercalated graphene oxide (GO) membranes, thus realizing regularization both in normal and radial direction. With the promotion in electron transfer and electrolyte penetration, the iron cross-linked GO membrane with spin coating for 40 cycles exhibits a high specific capacitance (427 F g at 1 A g) and rate capability (42.6% capacitance retention from 1 to 40 A g), as well as excellent cyclic capability (90.5% capacitance retention after 20,000 cycles). Particularly, a 21% increasement in capacitance can be achieved after high-speed spinning treatment. Moreover, the spin regularization strategy can be extended to GO membranes cross-linked by various multi-valence metal cations, the electrochemical performance of metal-cation cross-linked GO membrane electrodes after high-speed spinning treatment can also be improved obviously. Therefore, this paper provides a novel method to fabricate highly ordered GO membranes with promising electrochemical performance, which presents an immense potential application in membrane materials applied in energy storage, separation and catalysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2023.04.067 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!