Fowl adenovirus serotype 4 (FAdV-4) is a double-stranded DNA virus that mainly infects broiler chickens and has caused huge economic losses to the poultry industry. Recently, an FAdV-4 strain, SDLC202009, the causative pathogen of hydropericardium-hepatitis syndrome (HHS) in Liaocheng, Shandong, was isolated from commercial laying hens and propagated in specific pathogen free SPF chicken embryos. Pathogenicity studies showed that SDLC202009 could infect SPF chicken embryos and chickens, with a mortality rate of 100%. The complete genome was sequenced, and phylogenetic analysis showed that SDLC202009 belonged to the FAdV-4 cluster, with a genome length of 43, 077 bp. The SDLC202009 had 99.9% identity with the JSJ13 and SD1601, which were recently isolated in China. Compared to the recently isolated strain in China, SDLC202009 had deleted open reading frame 19 (ORF19), ORF27, ORF48, and ORF0. SDLC202009 harbored amino acid site mutations in the main structural proteins hexon, fiber1, and fiber2 similar with those in highly pathogenic strains. Furthermore, SDLC202009 showed unique mutations in hexon A571P, fiber1 E216K, and fiber2 N98K. In summary, our findings provide theoretical support for prevention and control of the HHS.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.rvsc.2023.04.013DOI Listing

Publication Analysis

Top Keywords

complete genome
8
highly pathogenic
8
fadv-4 strain
8
spf chicken
8
chicken embryos
8
sdlc202009
7
genome sequence
4
sequence pathogenicity
4
pathogenicity analysis
4
analysis highly
4

Similar Publications

Genomics Review of Selective RET Inhibitors Sensitivity in Thyroid Cancer Clinical Trials.

Am J Med Genet C Semin Med Genet

January 2025

Gastrointestinal and Endocrine Tumor Unit, Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology, Barcelona, Spain.

RET gene is a driver of thyroid cancer (TC) tumorigenesis. The incidence of TC has increased worldwide in the last few decades, both in medullary and follicular-derived subtypes. Several drugs, including multikinase and selective inhibitors, have been explored.

View Article and Find Full Text PDF

Background: Tea-oil Camellia within the genus Camellia is renowned for its premium Camellia oil, often described as "Oriental olive oil". So far, only one partial mitochondrial genomes of Tea-oil Camellia have been published (no main Tea-oil Camellia cultivars), and comparative mitochondrial genomic studies of Camellia remain limited.

Results: In this study, we first reconstructed the entire mitochondrial genome of C.

View Article and Find Full Text PDF

Early therapeutic intervention in high-risk smoldering multiple myeloma (HR-SMM) has shown benefits, however, no studies have assessed whether biochemical progression or response depth predicts long-term outcomes. The single-arm I-PRISM phase II trial (NCT02916771) evaluated ixazomib, lenalidomide, and dexamethasone in 55 patients with HR-SMM. The primary endpoint, median progression-free survival (PFS), was not reached (NR) (95% CI: 57.

View Article and Find Full Text PDF

Each human genome has approximately 5 million DNA variants. Even for complete loss-of-function variants causing inherited, monogenic diseases, current understanding based on gene-specific molecular function does not adequately predict variability observed between people with identical mutations or fluctuating disease trajectories. We present a parallel paradigm for loss-of-function variants based on broader consequences to the cell when aberrant polypeptide chains of amino acids are translated from mutant RNA to generate mutated proteins.

View Article and Find Full Text PDF

Insights into the behaviour of phosphorylated DNA breaks from molecular dynamic simulations.

Comput Biol Chem

December 2024

Faculty of Biochemistry and Molecular Medicine, University of Oulu, PO Box 5400, Oulu 90014, Finland; Biocenter Oulu, University of Oulu, PO Box 5400, Oulu 90014, Finland. Electronic address:

Single-stranded breaks (SSBs) are the most frequent DNA lesions threatening genomic integrity-understanding how DNA sensor proteins recognize certain SSB types is crucial for studies of the DNA repair pathways. During repair of damaged DNA the final SSB that is to be ligated contains a 5'-phosphorylated end. The present work employed molecular simulation (MD) of DNA with a phosphorylated break in solution to address multiple questions regarding the dynamics of the break site.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!