Natural antisense transcript of MYOG regulates development and regeneration in skeletal muscle by shielding the binding sites of MicroRNAs of MYOG mRNA 3'UTR.

Biochem Biophys Res Commun

Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong Province, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, 510642, China. Electronic address:

Published: June 2023

AI Article Synopsis

  • Natural antisense transcripts (NATs) are RNA molecules that play a key role in regulating biological processes, particularly in the growth and development of skeletal muscle by influencing sense transcripts.
  • Analysis of transcriptome data indicates that NATs make up a significant portion of long non-coding RNAs (lncRNAs), with a strong correlation to myoblast differentiation and functions related to RNA synthesis, protein transport, and cell cycle regulation.
  • The specific NAT called MYOG-NAT not only promotes myoblast differentiation but also stabilizes MYOG mRNA by competing with certain microRNAs, with its absence leading to muscle fiber atrophy and delayed muscle regeneration.

Article Abstract

Natural antisense transcripts (NATs) are endogenous RNAs opposite to sense transcripts, and they can significantly contribute to regulating various biological processes through multiple epigenetic mechanisms. NATs can affect their sense transcripts to regulate the growth and development of skeletal muscle. Our analysis of third-generation full-length transcriptome sequencing data revealed that NATs represented a significant portion of the lncRNA, accounting for up to 30.19%-33.35%. The expression of NATs correlated with myoblast differentiation, and genes expressing NATs were mainly involved in RNA synthesis, protein transport, and cell cycle. We found a NAT of MYOG (MYOG-NAT) in the data. We found that the MYOG-NAT could promote the differentiation of myoblasts in vitro. Additionally, knockdown of MYOG-NAT in vivo led to muscle fiber atrophy and muscle regeneration retardation. Molecular biology experiments demonstrated that MYOG-NAT enhances the stability of MYOG mRNA by competing with miR-128-2-5p, miR-19a-5p, and miR-19b-5p for binding to MYOG mRNA 3'UTR. These findings suggest that MYOG-NAT plays a critical role in skeletal muscle development and provides insights into the post-transcriptional regulation of NATs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2023.04.050DOI Listing

Publication Analysis

Top Keywords

skeletal muscle
12
myog mrna
12
natural antisense
8
mrna 3'utr
8
sense transcripts
8
nats
6
myog
5
muscle
5
myog-nat
5
antisense transcript
4

Similar Publications

Introduction: The purpose of this study was to evaluate the association between body composition, overall survival, odds of receiving treatment, and patient-reported outcomes (PROs) in individuals living with metastatic non-small-cell lung cancer (mNSCLC).

Methods: This retrospective analysis was conducted in newly diagnosed patients with mNSCLC who had computed-tomography (CT) scans and completed PRO questionnaires close to metastatic diagnosis date. Cox proportional hazard models and logistic regression evaluated overall survival and odds of receiving treatment, respectively.

View Article and Find Full Text PDF

Sarcopenia is defined as a muscle-wasting syndrome that occurs with accelerated aging, while cachexia is a severe wasting syndrome associated with conditions such as cancer and immunodeficiency disorders, which cannot be fully addressed through conventional nutritional supplementation. Sarcopenia can be considered a component of cachexia, with the bidirectional interplay between adipose tissue and skeletal muscle potentially serving as a molecular mechanism for both conditions. However, the underlying mechanisms differ.

View Article and Find Full Text PDF

Bone homeostasis encompasses two interrelated aspects: bone remodeling and cartilage metabolism. Disruption of bone homeostasis can lead to the development of metabolic bone diseases such as osteoporosis and osteoarthritis. The maintenance of bone homeostasis is a complex process that does not solely rely on the functions of the bone tissue itself.

View Article and Find Full Text PDF

Introduction: Skeletal muscle satellite cells (MuSCs or stem cells) play a crucial role in muscle development, maintenance, and regeneration, supporting both hypertrophy and regenerative myogenesis. Syndecans (SDCs) act as communication bridges within the muscle microenvironment, regulating interactions with extracellular matrix components and contributing significantly to tissue repair and inflammation. Specifically, syndecan-4 (SDC4) is involved in muscle regeneration at multiple stages.

View Article and Find Full Text PDF

Many of the 'hallmarks of aging' involve alterations in cellular and organismal metabolism. One pathway with the potential to impact several traditional markers of impaired function with aging is the PI3K/AKT metabolic pathway. Regulation of this pathway includes many aspects of cellular function, including protein synthesis, proliferation and survival, as well as many downstream targets, including mTOR and FOXOs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!