Redox-Neutral Strategy for Sulfilimines Synthesis via S-Arylation of Sulfenamides.

Org Lett

Laboratory of Marine Green Fine Chemicals, School of Chemistry and Chemical Engineering, Lingnan Normal University (LNU), 29 Cunjin Road, Zhanjiang 524048, P. R. China.

Published: May 2023

In this investigation, an unprecedented transition-metal-free and redox-neutral synthesis of sulfilimines was realized through the S-arylation of readily obtainable sulfenamides employing diaryliodonium salts. The pivotal step encompassed the resonance between bivalent nitrogen-centered anions, engendered postdeprotonation of sulfenamides under alkaline conditions, and sulfinimidoyl anions. The experimental outcomes demonstrate that sulfinimidoyl anionic species function as efficacious nucleophilic reagents, affording sulfilimines with notable to exceptional yields and superlative chemoselectivity, all executed within a transition-metal-free protocol and under exceptionally mild conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.orglett.3c01077DOI Listing

Publication Analysis

Top Keywords

redox-neutral strategy
4
strategy sulfilimines
4
sulfilimines synthesis
4
synthesis s-arylation
4
s-arylation sulfenamides
4
sulfenamides investigation
4
investigation unprecedented
4
unprecedented transition-metal-free
4
transition-metal-free redox-neutral
4
redox-neutral synthesis
4

Similar Publications

Dual Photoredox and Copper-Catalyzed Asymmetric Remote C(sp)-H Alkylation of Hydroxamic Acid Derivatives with Glycine Derivatives.

J Org Chem

January 2025

Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.

Dual photoredox and copper-catalyzed remote asymmetric C(sp)-H alkylation of hydroxamic acid derivatives with glycine derivatives via a 1,5-hydrogen transfer (1,5-HAT) process has been realized. The reaction was characterized by redox-neutral and mild conditions, good yields, excellent enantioselectivity, and broad substrate scope. This protocol provides a straightforward and efficient strategy to prepare highly valuable enantioenriched noncanonical α-amino acids.

View Article and Find Full Text PDF

All-carbon quaternary and tertiary stereocenters connected at the C2-position of functionalizable C3-alkylated indole nucleus are commonly occurring frameworks found in many indole alkaloids of medicinal importance. Their direct access is scarcely reported, a long-standing problem, and developing a unique yet simple method can pave the pathway to an entirely different retrosynthetic route for the total synthesis of these alkaloids. Herein, this problem is addressed by developing an unprecedented branch-selective allylation strategy employing a broad range of structurally and electronically different 3-alkenyl-indoles and allylboronic acids.

View Article and Find Full Text PDF

Palladium-Catalyzed Reductive and Redox-Neutral Cyclization Approach to the Southern Core of Avermectins.

Org Lett

January 2025

Omura Satoshi Memorial Institute and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan.

The avermectins make up a biologically relevant class of complex natural products that continue to inspire the development of new strategies in chemical synthesis. Herein, we disclose a concise synthesis of the southern core of avermectin aglycon. The key hydrobenzofuran was forged by either reductive cyclization or cycloisomerization, both using a cationic palladium precatalyst.

View Article and Find Full Text PDF

Practical synthesis of -aryl glycosides redox-neutral Borono-Catellani reaction.

Chem Commun (Camb)

January 2025

Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric OptoElectronic Materials, College of Chemistry and Molecular Sciences and The Institute for Advanced Studies and TaiKang Center for Life and Medical Sciences, Wuhan University, 430072, Wuhan, China.

Herein, we describe a practical Borono-Catellani strategy for the efficient synthesis of -aryl glycosides, with readily available arylboronic esters and glycosyl chlorides as the building blocks. It features mild reaction conditions, excellent diastereoselectivities, and good functional group tolerance. A diverse array of highly decorated -(hetero)aryl glycosides are obtained in a convergent and redox-neutral manner.

View Article and Find Full Text PDF

Single-Electron Oxidation Triggered by Visible-Light-Excited Enzymes for Asymmetric Biocatalysis.

Angew Chem Int Ed Engl

January 2025

State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.

Article Synopsis
  • Photoenzymatic catalysis combines enzymatic and photocatalytic processes to enhance enzyme efficiency and improve control over reaction outcomes involving reactive intermediates.
  • This review focuses on a novel method using single-electron-oxidation to drive non-natural chemical transformations with enzymes activated by visible light.
  • The advancements discussed aim to expand the range of reactions enzymes can perform, paving the way for innovative applications in photobiomanufacturing.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!