The mosquito Aedes aegypti is the vector of a number of medically-important viruses, including dengue virus, yellow fever virus, chikungunya virus, and Zika virus, and as such vector control is a key approach to managing the diseases they cause. Understanding the impact of vector control on these diseases is aided by first understanding its impact on Ae. aegypti population dynamics. A number of detail-rich models have been developed to couple the dynamics of the immature and adult stages of Ae. aegypti. The numerous assumptions of these models enable them to realistically characterize impacts of mosquito control, but they also constrain the ability of such models to reproduce empirical patterns that do not conform to the models' behavior. In contrast, statistical models afford sufficient flexibility to extract nuanced signals from noisy data, yet they have limited ability to make predictions about impacts of mosquito control on disease caused by pathogens that the mosquitoes transmit without extensive data on mosquitoes and disease. Here, we demonstrate how the differing strengths of mechanistic realism and statistical flexibility can be fused into a single model. Our analysis utilizes data from 176,352 household-level Ae. aegypti aspirator collections conducted during 1999-2011 in Iquitos, Peru. The key step in our approach is to calibrate a single parameter of the model to spatio-temporal abundance patterns predicted by a generalized additive model (GAM). In effect, this calibrated parameter absorbs residual variation in the abundance time-series not captured by other features of the mechanistic model. We then used this calibrated parameter and the literature-derived parameters in the agent-based model to explore Ae. aegypti population dynamics and the impact of insecticide spraying to kill adult mosquitoes. The baseline abundance predicted by the agent-based model closely matched that predicted by the GAM. Following spraying, the agent-based model predicted that mosquito abundance rebounds within about two months, commensurate with recent experimental data from Iquitos. Our approach was able to accurately reproduce abundance patterns in Iquitos and produce a realistic response to adulticide spraying, while retaining sufficient flexibility to be applied across a range of settings.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10168549 | PMC |
http://dx.doi.org/10.1371/journal.pcbi.1010424 | DOI Listing |
Nat Med
January 2025
Center for Infectious Disease Modeling and Analysis, Yale School of Public Health, New Haven, CT, USA.
Respiratory syncytial virus (RSV) causes a substantial health burden among infants and older adults. Prefusion F protein-based vaccines have shown high efficacy against RSV disease in clinical trials, offering promise for mitigating this burden through maternal and older adult immunization. Employing an individual-based model, we evaluated the impact of RSV vaccination on hospitalizations and deaths in 13 high-income countries, assuming that the vaccine does not prevent infection or transmission.
View Article and Find Full Text PDFJ Prev Med Public Health
December 2024
Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea.
Objectives: This study was performed to evaluate the utilization patterns of acid suppressants following the withdrawal of ranitidine in Korea.
Methods: Health Insurance Review & Assessment Service (HIRA) data from January 2016 to May 2023 were utilized to assess the usage of histamine H2 receptor antagonists (H2RAs) and proton pump inhibitors (PPIs) for acid-related diseases. Drug utilization was calculated for each agent based on the defined daily dose (DDD).
Astrobiology
December 2024
Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Bari, Italy.
Agent-based simulations are set to describe the early biotic selection of oligomers made of monomers of different chirality. The simulations consider the spatial distribution of agents and resources, the balance of biomass of different chirality, and the balance of chemical energy. Following the well-known Wald's hypothesis, a disadvantage is attributed to the change in chirality along the biochemical sequence.
View Article and Find Full Text PDFJ Math Biol
January 2025
Laboratory of Mathematics and Complex Systems, Ministry of Education, School of Mathematical Sciences, Beijing Normal University, Beijing, People's Republic of China.
Networked evolutionary game theory is a well-established framework for modeling the evolution of social behavior in structured populations. Most of the existing studies in this field have focused on 2-strategy games on heterogeneous networks or n-strategy games on regular networks. In this paper, we consider n-strategy games on arbitrary networks under the pairwise comparison updating rule.
View Article and Find Full Text PDFInfect Control Hosp Epidemiol
January 2025
One Health Trust, Washington, D.C., USA.
Background: Clinical trials for assessing the effects of infection prevention and control (IPC) interventions are expensive and have shown mixed results. Mathematical models can be relatively inexpensive tools for evaluating the potential of interventions. However, capturing nuances between institutions and in patient populations have adversely affected the power of computational models of nosocomial transmission.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!