Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The boundaries and regions between individual classes in biomedical image classification are hazy and overlapping. These overlapping features make predicting the correct classification result for biomedical imaging data a difficult diagnostic task. Thus, in precise classification, it is frequently necessary to obtain all necessary information before making a decision. This paper presents a novel deep-layered design architecture based on Neuro-Fuzzy-Rough intuition to predict hemorrhages using fractured bone images and head CT scans. To deal with data uncertainty, the proposed architecture design employs a parallel pipeline with rough-fuzzy layers. In this case, the rough-fuzzy function functions as a membership function, incorporating the ability to process rough-fuzzy uncertainty information. It not only improves the deep model's overall learning process, but it also reduces feature dimensions. The proposed architecture design improves the model's learning and self-adaptation capabilities. In experiments, the proposed model performed well, with training and testing accuracies of 96.77% and 94.52%, respectively, in detecting hemorrhages using fractured head images. The comparative analysis shows that the model outperforms existing models by an average of 2.6 ±0.90% on various performance metrics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/JBHI.2023.3270492 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!