AI Article Synopsis

  • DNAAF5 is a factor linked to primary ciliary dyskinesia (PCD), a genetic condition affecting motile cilia, and its heterozygosity's effects on cilia function were investigated using CRISPR-Cas9 in mice.
  • Mice with different Dnaaf5 gene variants exhibited significant differences in disease severity; those with one missense mutation had better survival and partially functioning cilia compared to those with a null allele or a combination of both.
  • Proteomic and transcriptional analyses indicated variability in protein expression and functionality across different tissues, emphasizing the complexity of genetic influences on cilia assembly and related health outcomes in PCD.

Article Abstract

DNAAF5 is a dynein motor assembly factor associated with the autosomal heterogenic recessive condition of motile cilia, primary ciliary dyskinesia (PCD). The effects of allele heterozygosity on motile cilia function are unknown. We used CRISPR-Cas9 genome editing in mice to recreate a human missense variant identified in patients with mild PCD and a second, frameshift-null deletion in Dnaaf5. Litters with Dnaaf5 heteroallelic variants showed distinct missense and null gene dosage effects. Homozygosity for the null Dnaaf5 alleles was embryonic lethal. Compound heterozygous animals with the missense and null alleles showed severe disease manifesting as hydrocephalus and early lethality. However, animals homozygous for the missense mutation had improved survival, with partially preserved cilia function and motor assembly observed by ultrastructure analysis. Notably, the same variant alleles exhibited divergent cilia function across different multiciliated tissues. Proteomic analysis of isolated airway cilia from mutant mice revealed reduction in some axonemal regulatory and structural proteins not previously reported in DNAAF5 variants. Transcriptional analysis of mouse and human mutant cells showed increased expression of genes coding for axonemal proteins. These findings suggest allele-specific and tissue-specific molecular requirements for cilia motor assembly that may affect disease phenotypes and clinical trajectory in motile ciliopathies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10393236PMC
http://dx.doi.org/10.1172/jci.insight.168836DOI Listing

Publication Analysis

Top Keywords

motor assembly
12
cilia function
12
gene dosage
8
primary ciliary
8
ciliary dyskinesia
8
motile cilia
8
missense null
8
dnaaf5
6
cilia
6
dnaaf5 gene
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!