Acute kidney injury (AKI) is the rapid reduction in renal function. It is often difficult to detect at an early stage. Biofluid microRNAs (miRs) have been proposed as novel biomarkers due to their regulatory role in renal pathophysiology. The goal of this study was to determine the overlap in AKI miRNA profiles in the renal cortex, urine, and plasma samples collected from a rat model of ischemia-reperfusion (IR)-induced AKI. Bilateral renal ischemia was induced by clamping the renal pedicles for 30 min, followed by reperfusion. Urine was then collected over 24 h, followed by terminal blood and tissue collection for small RNA profiling. Differentially expressed (IR vs. sham) miRs within the urine and renal cortex sample types demonstrated a strong correlation in normalized abundance regardless of injury (IR and sham: R = 0.8710 and 0.9716, respectively). Relatively few miRs were differentially expressed in multiple samples. Further, there were no differentially expressed miRs with clinically relevant sequence conservation common between renal cortex and urine samples. This project highlights the need for a comprehensive analysis of potential miR biomarkers, including analysis of pathological tissues and biofluids, with the goal of identifying the cellular origin of altered miRs. Analysis at earlier timepoints is needed to further evaluate clinical potential.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10141369 | PMC |
http://dx.doi.org/10.3390/ncrna9020024 | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
Department of Zoology, College of Science, King Saud University, 11451 Riyadh, Saudi Arabia.
Background: We investigated chitosan's protective effects against tertiary butylhydroquinone (TBHQ)-induced toxicity in adult male rats, focusing on cognitive functions and oxidative stress in the brain, liver, and kidneys.
Methods: Rats were divided into four groups (n = 8/group): (1) Control, (2) Chitosan only, (3) TBHQ only, and (4) Chitosan + TBHQ.
Results: TBHQ exposure led to significant cognitive impairments and increased oxidative stress, marked by elevated malondialdehyde (MDA) and decreased superoxide dismutase (SOD) and glutathione (GSH) levels.
Int J Mol Sci
January 2025
Department of Nephrology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania.
Autophagy and mitophagy are critical cellular processes that maintain homeostasis by removing damaged organelles and promoting cellular survival under stress conditions. In the context of diabetic kidney disease, these mechanisms play essential roles in mitigating cellular damage. This review provides an in-depth analysis of the recent literature on the relationship between autophagy, mitophagy, and diabetic kidney disease, highlighting the current state of knowledge, existing research gaps, and potential areas for future investigations.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 80-308 Gdansk, Poland.
Microalbuminuria is the earliest clinical abnormality in diabetic kidney disease. High glucose (HG) concentrations are associated with the induction of oxidative stress in podocytes, leading to disruption of the glomerular filtration barrier. Our recent study revealed a significant decrease in the membrane-bound fraction of Klotho in podocytes that were cultured under HG conditions.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Pathology, Albert Szent-Györgyi Medical Center, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary.
Fibronectin glomerulopathy (FG) is caused by fibronectin 1 () gene mutations. A renal biopsy was performed on a 4-year-old girl with incidentally discovered proteinuria (150 mg/dL); her family history of renal disease was negative. Markedly enlarged glomeruli (mean glomerular diameter: 196 μm; age-matched controls: 140 μm), α-SMA-positive and Ki-67-positive mesangial cell proliferation (glomerular proliferation index 1.
View Article and Find Full Text PDFBiomedicines
January 2025
Institute of Pathology "Dr. Ðorđe Joannović", Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia.
Background: Congenital mesoblastic nephroma represents 3-10% of all pediatric renal tumors. With the advancement of ultrasound diagnostics and magnetic resonance imaging, the diagnosis of this renal neoplasm is increasingly being established prenatally and at birth. It usually presents as a benign tumor, but it can severely affect pregnancy outcomes, contributing to perinatal morbidity and mortality.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!