Self-assembled bilayer structures such as those produced from amphiphilic block copolymers (polymersomes) are potentially useful in a wide array of applications including the production of artificial cells and organelles, nanoreactors, and delivery systems. These constructs are of important fundamental interest, and they are also frequently considered toward advances in bionanotechnology and nanomedicine. In this framework, membrane permeability is perhaps the most important property of such functional materials. Having in mind these considerations, we herein report the manufacturing of intrinsically permeable polymersomes produced using block copolymers comprising poly[2-(diisopropylamino)-ethyl methacrylate] (PDPA) as the hydrophobic segment. Although being water insoluble at pH 7.4, its p ∼ 6.8 leads to the presence of a fraction of protonated amino groups close to the physiological pH, thus conducting the formation of relatively swollen hydrophobic segments. Rhodamine B-loaded vesicles demonstrated that this feature confers inherent permeability to the polymeric membrane, which can still be modulated to some extent by the solution pH. Indeed, even at higher pH values where the PDPA chains are fully deprotonated, the experiments demonstrate that the membranes remain permeable. While membrane permeability can be, for instance, regulated by introducing membrane proteins and DNA nanopores, examples of membrane-forming polymers with intrinsic permeability have been seldom reported so far, and the possibility to regulate the flow of chemicals in these compartments by tuning block copolymer features and ambient conditions is of due relevance. The permeable nature of PDPA membranes possibly applies to a wide array of small molecules, and these findings can in principle be translocated to a variety of disparate bio-related applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.biomac.3c00162 | DOI Listing |
Macromol Rapid Commun
January 2025
School of Materials Science and Engineering, Beihang University, Beijing, 100191, P. R. China.
Polymer cubosomes (PCs) have garnered significant interest in the field of nanomaterials and nanotechnology due to their unique properties and potential applications. However, the fabrication of PCs remains challenging. Polymerization-induced self-assembly (PISA) is recognized as an efficient method for producing a variety of polymer particles, including PCs.
View Article and Find Full Text PDFMacromol Biosci
January 2025
Cluster for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW, Sydney, NSW, 2052, Australia.
Invasive fungal infections cause over 3.7 million deaths worldwide annually, underscoring the critical need for new antifungal agents. Developing selective antifungal agents is challenging due to the shared eukaryotic nature of both fungal and mammalian cells.
View Article and Find Full Text PDFACS Macro Lett
January 2025
Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135 6525 AJ, Nijmegen, The Netherlands.
Lactide, possessing two stereocenters and thus three distinct configurations (DD, DL, and LL), serves as a captivating building block for polymers and self-assembly. Notably, polylactide (PLA) exhibits stereocomplexation, displaying heightened interactions between different configurations compared with interactions within the same configuration. This characteristic renders PLA an intriguing subject for investigating self-assembly behavior.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States.
Bottlebrush block polymers, characterized by densely grafted side chains extending from a backbone, have recently garnered significant attention. A particularly attractive feature is the accessibility of ordered morphologies with domain spacings exceeding several hundred nanometers, a capability that is challenging to achieve with linear polymers. These large morphologies make bottlebrush block polymers promising for various applications, such as photonic crystals.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600MB Eindhoven, The Netherlands.
Spontaneous phase separation of materials is a powerful strategy to generate highly defined 2D nanomorphologies with novel properties and functions. Exemplary are such morphologies in block copolymers or amphiphilic systems, whose formation can be well predicted based on parameters such as volume fraction and shape factor. In contrast, the formation of 2D nanomorphologies is currently unpredictable in materials perfectly defined at the molecular level, in which crystallinity plays a significant role.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!