This article discusses the utilization of industrial by-products, namely, electric arc furnace slag (EAFS) and fly ash to produce cementless geopolymer binder. Taguchi-grey optimization is used for experimental design and for investigating the effects of mix design parameters. Fly ash, in the levels of 0-75% (by mass), partly replaced EAFS in the binary-blended composite system. Experiments were performed on the microstructural development, mechanical properties, and durability of ambient-cured EAFS-fly ash geopolymer paste (EFGP). The optimal mix with 75-25% composition of EAFS and fly ash produced ~ 39 MPa compressive strength accrediting to the co-existence of C-A-S-H and N-A-S-H gels. The initial and final setting times were 127 min and 581 min, respectively, owing to adequate alkali and amorphous contents in the matrix, and the flowability was 108% due to sufficient activator content and the spherical shape of fly ash particles. SEM, XRD, and FTIR results corroborated the mechanical test results.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-023-26884-8DOI Listing

Publication Analysis

Top Keywords

fly ash
20
mix design
8
eafs fly
8
ash
6
fly
5
mitigating environmental
4
environmental impact
4
impact development
4
development ambient-cured
4
ambient-cured eaf
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!