Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Acute myeloid leukaemias harbouring a rearrangement of the mixed lineage leukaemia gene (MLL) are aggressive haematopoietic malignancies that relapse early and have a poor prognosis (event-free survival less than 50%). Menin is a tumour suppressor, however, in MLL-rearranged leukaemias it functions as a co-factor which is mandatory for the leukaemic transformation by interaction with the N-terminal part of MLL, which is maintained in all MLL-fusion proteins. Inhibition of menin blocks leukaemogenesis and leads to differentiation and, in turn, to apoptosis of leukaemic blasts. Furthermore, nucleophosmin 1 (NPM1) binds to specific chromatin targets, which are co-occupied by MLL, and menin inhibition has been shown to trigger degradation of mNPM1 resulting in a rapid decrease in gene expression and activating histone modifications. Therefore, disruption of the menin-MLL axis blocks leukaemias driven by NPM1 mutations for which the expression of menin-MLL target genes (e.g., MEIS1, HOX etc.) is essential. To date at least six different menin-MLL inhibitors are undergoing clinical evaluation as first- and second-line monotherapy in acute leukaemias: DS-1594, BMF-219, JNJ-75276617, DSP-5336, revumenib, and ziftomenib, however, only for revumenib and ziftomenib early clinical data have been reported. In the revumenib phase I/II AUGMENT-101 trial (N = 68) with very heavily pretreated AML patients the ORR was 53% with a CR rate of 20%. The ORR in patients harbouring MLL rearrangement of mNPM1 was 59%. Patients who achieved a response had a mOS of 7 months. Similar results have been reported for ziftomenib in the phase I/II COMET-001 trial. ORR was 40% and CRc was 35% in AML patients with mNPM1. However, outcome was worse in AML patients with a MLL rearrangement (ORR 16.7%, CRc 11%). Differentiation syndrome was a notable adverse event. The clinical development of novel menin-MLL inhibitors is well in line with the currently ongoing paradigm shift towards targeted therapies seen in the AML treatment landscape. Moreover, the clinical assessment of combinations of these inhibitors with established therapy options in AML could be the fuel for an improved outcome of MLL/NPM1 patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00432-023-04752-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!