Quantification of chronic mitral regurgitation (MR) is essential to guide patients' clinical management and define the need and appropriate timing for mitral valve surgery. Echocardiography represents the first-line imaging modality to assess MR and requires an integrative approach based on qualitative, semiquantitative, and quantitative parameters. Of note, quantitative parameters, such as the echocardiographic effective regurgitant orifice area, regurgitant volume (RegV), and regurgitant fraction (RegF), are considered the most reliable indicators of MR severity. In contrast, cardiac magnetic resonance (CMR) has demonstrated high accuracy and good reproducibility in quantifying MR, especially in cases with secondary MR; nonholosystolic, eccentric, and multiple jets; or noncircular regurgitant orifices, where quantification with echocardiography is an issue. No gold standard for MR quantification by noninvasive cardiac imaging has been defined so far. Only a moderate agreement has been shown between echocardiography, either with transthoracic or transesophageal approaches, and CMR in MR quantification, as supported by numerous comparative studies. A higher agreement is evidenced when echocardiographic 3D techniques are used. CMR is superior to echocardiography in the calculation of the RegV, RegF, and ventricular volumes and can provide myocardial tissue characterization. However, echocardiography remains fundamental in the pre-operative anatomical evaluation of the mitral valve and of the subvalvular apparatus. The aim of this review is to explore the accuracy of MR quantification provided by echocardiography and CMR in a head-to-head comparison between the two techniques, with insight into the technical aspects of each imaging modality.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10145831PMC
http://dx.doi.org/10.3390/jcdd10040150DOI Listing

Publication Analysis

Top Keywords

echocardiography cmr
8
cmr quantification
8
quantification chronic
8
chronic mitral
8
mitral regurgitation
8
mitral valve
8
imaging modality
8
quantitative parameters
8
echocardiography
7
quantification
6

Similar Publications

Impact of measurement location on direct mitral regurgitation quantification using 4D flow CMR.

J Cardiovasc Magn Reson

January 2025

Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA. Electronic address:

Background: Four-dimensional (4D) flow cardiovascular magnetic resonance (CMR) shows promise for quantifying mitral regurgitation (MR) by allowing for direct regurgitant volume (RVol) measurement using a plane precisely placed at the MR jet. However, the ideal location of a measurement plane remains unclear. This study aims to systematically examine how varying measurement locations affect RVol quantification and determine the optimal location using the momentum conservation principle of a free jet.

View Article and Find Full Text PDF

The Role of Imaging in Pulmonary Vascular Disease: The Clinician's Perspective.

Radiol Clin North Am

March 2025

Department of Medicine, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8558, USA; Department of Pediatrics, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8558, USA. Electronic address:

Pulmonary vascular diseases, particularly when accompanied by pulmonary hypertension, are complex disorders often requiring multimodal imaging for diagnosis and monitoring. Echocardiography is the primary screening tool for pulmonary hypertension, while cardiac MR imaging (CMR) is used for more detailed characterization and risk stratification in right ventricular failure. Chest computed tomography (CT) is used to detect vascular anomalies and parenchymal lung diseases.

View Article and Find Full Text PDF

Extracellular volume (ECV) by cardiovascular magnetic resonance (CMR) imaging is associated with disease burden and clinical outcomes. Recent studies in patients with valvular heart disease (VHD) have suggested that the indexed total ECV (iECV) = ECVx(LV/1.05)/body surface area may supersede ECV in terms of prognostication.

View Article and Find Full Text PDF

Left Ventricular Hypertrabeculation (LVHT) in Athletes: A Negligible Finding?

Medicina (Kaunas)

December 2024

Clinic of Cardiac and Vascular Diseases, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, LT-03225 Vilnius, Lithuania.

Left ventricular hypertrabeculation (LVHT) used to be a rare phenotypic trait. With advances in diagnostic imaging techniques, LVHT is being recognised in an increasing number of people. The scientific data show the possibility of the overdiagnosis of this cardiomyopathy in a population of people who have very high levels of physical activity.

View Article and Find Full Text PDF

Marfan syndrome (MFS) is a genetic disorder affecting connective tissue, often leading to cardiovascular complications such as aortic aneurysms and mitral valve prolapse. Cardiovascular multimodality imaging plays a crucial role in the diagnosis, monitoring, and management of MFS patients. This review explores the advancements in echocardiography, cardiovascular magnetic resonance (CMR), cardiac computed tomography (CCT), and nuclear medicine techniques in MFS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!