AI Article Synopsis

  • ARF GTPases are key players in maintaining cellular membrane balance, with five human types showing similar sequences and possibly overlapping functions, complicating their study.
  • Using CRISPR-Cas9 knockins, researchers identified distinct nanoscale localizations of ARF1, ARF4, and ARF5 within the Golgi and ER-Golgi intermediate compartments, emphasizing their unique roles in COPI recruitment on early secretory membranes.
  • The findings suggest that ARF1 and ARF3 are involved in different processes on the trans-Golgi network, offering a detailed map of ARF GTPases that will help further unravel their diverse functions in cell biology.

Article Abstract

ADP-ribosylation factor (ARF) GTPases are major regulators of cellular membrane homeostasis. High sequence similarity and multiple, possibly redundant functions of the five human ARFs make investigating their function a challenging task. To shed light on the roles of the different Golgi-localized ARF members in membrane trafficking, we generated CRISPR-Cas9 knockins (KIs) of type I (ARF1 and ARF3) and type II ARFs (ARF4 and ARF5) and mapped their nanoscale localization with stimulated emission depletion (STED) super-resolution microscopy. We find ARF1, ARF4, and ARF5 on segregated nanodomains on the cis-Golgi and ER-Golgi intermediate compartments (ERGIC), revealing distinct roles in COPI recruitment on early secretory membranes. Interestingly, ARF4 and ARF5 define Golgi-tethered ERGIC elements decorated by COPI and devoid of ARF1. Differential localization of ARF1 and ARF4 on peripheral ERGICs suggests the presence of functionally different classes of intermediate compartments that could regulate bi-directional transport between the ER and the Golgi. Furthermore, ARF1 and ARF3 localize to segregated nanodomains on the trans-Golgi network (TGN) and are found on TGN-derived post-Golgi tubules, strengthening the idea of distinct roles in post-Golgi sorting. This work provides the first map of the nanoscale organization of human ARF GTPases on cellular membranes and sets the stage to dissect their numerous cellular roles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10140647PMC
http://dx.doi.org/10.1083/jcb.202205107DOI Listing

Publication Analysis

Top Keywords

arf gtpases
12
arf4 arf5
12
arf1 arf3
8
arf1 arf4
8
segregated nanodomains
8
intermediate compartments
8
distinct roles
8
arf1
5
sted imaging
4
imaging endogenously
4

Similar Publications

Salmonella enterica serotype Typhimurium (Salmonella) resides and multiplies intracellularly in cholesterol-rich compartments called Salmonella-containing vacuoles (SCVs) with actin-rich tubular extensions known as Salmonella-induced filaments (SIFs). SCV maturation depends on host-derived cholesterol, but the transport mechanism of low-density lipoprotein (LDL)-derived cholesterol to SCVs remains unclear. Here we find that peroxisomes are recruited to SCVs and function as pro-bacterial organelle.

View Article and Find Full Text PDF

Exploiting F NMR in a Multiplexed Assay for Small GTPase Activity.

J Am Chem Soc

December 2024

Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260, United States.

Small GTPases (smG) are a 150-member family of proteins, comprising five subfamilies: Ras, Rho, Arf, Rab, and Ran-GTPases. These proteins function as molecular switches, toggling between two distinct nucleotide-bound states. Using traditional multidimensional heteronuclear NMR, even for single smGs, numerous experiments, high protein concentrations, expensive isotope labeling, and long analysis times are necessary.

View Article and Find Full Text PDF

The ARF gene family plays a vital role in regulating multiple aspects of plant growth and development. However, detailed research on the role of the ARF family in regulating flower development in petunia and other plants remains limited. This study investigates the distinct roles of and in flower development.

View Article and Find Full Text PDF

ARMH3 is an ARL5 effector that promotes PI4KB-catalyzed PI4P synthesis at the trans-Golgi network.

Nat Commun

November 2024

Division of Neurosciences and Cellular Structure, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.

ARL5 is a member of the ARF family of small GTPases that is recruited to the trans-Golgi network (TGN) by another ARF-family member, ARFRP1, in complex with the transmembrane protein SYS1. ARL5 recruits its effector, the multisubunit tethering complex GARP, to promote SNARE-dependent fusion of endosome-derived retrograde transport carriers with the TGN. To further investigate the function of ARL5, we sought to identify additional effectors.

View Article and Find Full Text PDF

Iron acquisition is crucial for plants. The abundance of IRON-REGULATED TRANSPORTER 1 (IRT1) is controlled through endomembrane trafficking, a process that requires small ARF-like GTPases. Only few components that are involved in the vesicular trafficking of specific cargo are known.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!