AI Article Synopsis

  • * Results showed that hydrogels with low GO content had effective barrier properties in the UV range, while higher GO concentrations affected the hydrogel's structure by reducing distances between protein helices.
  • * The study also introduced a new method to measure swelling rates through electrical conductivity, suggesting the potential for hydrogel applications as sensors.

Article Abstract

This study presents a structural analysis of a whey and gelatin-based hydrogel reinforced with graphene oxide (GO) by ultraviolet and visible (UV-VIS) spectroscopy, Fourier transform infrared spectroscopy (FT-IR), and X-ray diffraction (XRD). The results revealed barrier properties in the UV range for the reference sample (containing no graphene oxide) and the samples with minimal GO content of 0.66×10-3% and 3.33×10-3%, respectively, in the UV-VIS and near-IR range; for the samples with higher GO content, this was 6.67×10-3% and 33.33×10-3% as an effect of the introduction of GO into the hydrogel composite. The changes in the position of diffraction angles 2 from the X-ray diffraction patterns of GO-reinforced hydrogels indicated a decrease in the distances between the turns of the protein helix structure due to the GO cross-linking effect. Transmission electron spectroscopy (TEM) was used for GO, whilst scanning electron microscopy (SEM) was used for the composite characterization. A novel technique for investigating the swelling rate was presented by performing electrical conductivity measurements, the results of which led to the identification of a potential hydrogel with sensor properties.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10138084PMC
http://dx.doi.org/10.3390/gels9040298DOI Listing

Publication Analysis

Top Keywords

graphene oxide
8
x-ray diffraction
8
characterization graphene
4
graphene oxide-reinforced
4
oxide-reinforced whey
4
hydrogel
4
whey hydrogel
4
hydrogel eco-friendly
4
eco-friendly absorbent
4
absorbent food
4

Similar Publications

Mineral Scaling in 3D Interfacial Solar Evaporators─A Challenge for Brine Treatment and Lithium Recovery.

Environ Sci Technol

January 2025

Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, California 94720, United States.

In this work, we analyzed the effects of mineral scaling on the performance of a 3D interfacial solar evaporator, with a focus on the cations relevant to lithium recovery from brackish water. The field has been rapidly moving toward resource recovery applications from brines with higher cation concentrations. However, the potential complications caused by common minerals in these brines other than NaCl have been largely overlooked.

View Article and Find Full Text PDF

Simple synthesis of graphene oxide-supported and phosphorylated chitosan gel bead to uptake uranium from wastewater.

Int J Biol Macromol

December 2024

State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, CAEA Innovation Center of Nuclear Environmental Safety Technology, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China.

With the development of the nuclear industry, the direct discharge of uranium-containing wastewater has become increasingly harmful to the environment. A novel graphene oxide-supported and phosphoric-crosslinked chitosan gel bead (C-PGCB) with excellent uranium uptake capability was successfully fabricated to treat uranium-containing wastewater. The experimental results showed that the introduction of PO and CO bonds through phosphoric acid crosslinking could greatly improve the capturing ability of chitosan-based materials, which could reach 97.

View Article and Find Full Text PDF

Anticorrosion coating with near-infrared light triggered precisely controllable self-healing performances.

J Colloid Interface Sci

December 2024

Georgia Southern Univ, Dept Chem & Biochem, POB 8064, Statesboro, GA 30460, USA.

Great attentions have been paid to anticorrosion coatings with self-healing performances to enhance its reliability and protection period, but massive challenges still remain for developing a coating with selectively triggered and accurately controllable self-healing behaviors. Herein, by integrating lamellar graphene oxide (GO) into a polycaprolactone (PCL) nanofiber loaded with 8-hydroxyquinoline (8HQ) corrosion inhibitors, a composite coating with precisely controllable self-healing capabilities is developed. The coating defects can be remotely and accurately repaired under near-infrared (NIR) light irradiation within a very short time.

View Article and Find Full Text PDF

Graphene oxide supported MOFs-nanofiber carbon aerogel/SPCE for simultaneous detection of Cd and Pb in seafood.

Food Chem

December 2024

College of Chemistry and Life Sciences, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China. Electronic address:

A novel electrochemical sensor for detecting heavy metal ions in seafood was developed to address food safety concerns. The sensor integrates graphene oxide into NH-UiO-66 loaded nanofiber carbon aerogel, enhanced its three-dimensional conductive network and effective active surface area (0.34 cm), which improved ion enrichment and oxidation-reduction reaction rates.

View Article and Find Full Text PDF

Construction of crystalline/amorphous NiP/FePO/graphene heterostructure by microwave irradiation for efficient oxygen evolution.

J Colloid Interface Sci

December 2024

Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China; Shaanxi Key Laboratory for Carbon Neutral Technology, Northwest University, Xi'an 710127, China. Electronic address:

The rational design of highly efficient and cost-effective oxygen evolution reaction (OER) electrocatalysts is crucial for hydrogen production through electrocatalytic water splitting. Although the crystalline/amorphous heterostructure shows great potential in enhancing OER activity, its fabrication presents significantly greater challenges compared to that of crystalline/crystalline heterostructures. Herein, a microwave irradiation strategy is developed to construct reduced graphene oxide supported crystalline NiP/amorphous FePO heterostructure (NiP/FePO/RGO) as an efficient OER electrocatalyst.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!