Toll-like receptor 4 (TLR4) is crucial in the innate immune response with species-specific recognition. As a novel small-molecule agonist for mouse TLR4/MD2, Neoseptin 3 fails to activate human TLR4/MD2, while the underlying mechanism is unclear. Herein, molecular dynamics simulations were performed to investigate the species-specific molecular recognition of Neoseptin 3. Lipid A, a classic TLR4 agonist showing no apparent species-specific sensing by TLR4/MD2, was also investigated for comparison. Neoseptin 3 and lipid A showed similar binding patterns with mouse TLR4/MD2. Although the binding free energies of Neoseptin 3 interacting with TLR4/MD2 from mouse and human species were similar, protein-ligand interactions and the details of the dimerization interface were substantially different between Neoseptin 3-bound mouse and human heterotetramers at the atomic level. Neoseptin 3 binding made human (TLR4/MD2) more flexible than human (TLR4/MD2/Lipid A), especially at the TLR4 C-terminus and MD2, which drives human (TLR4/MD2) fluctuating away from the active conformation. In contrast to mouse (TLR4/MD2/2*Neoseptin 3) and mouse/human (TLR4/MD2/Lipid A) systems, Neoseptin 3 binding to human TLR4/MD2 led to the separating trend of the C-terminus of TLR4. Furthermore, the protein-protein interactions at the dimerization interface between TLR4 and the neighboring MD2 in the human (TLR4/MD2/2*Neoseptin 3) system were much weaker than those of the lipid A-bound human TLR4/MD2 heterotetramer. These results explained the inability of Neoseptin 3 to activate human TLR4 signaling and accounted for the species-specific activation of TLR4/MD2, which provides insight for transforming Neoseptin 3 as a human TLR4 agonist.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3cp00949a | DOI Listing |
Drug Dev Res
February 2025
Department of Pharmaceutical Science, School of Health Science and Technology, UPES, Dehradun, Uttarakhand, India.
Toll-like receptor 4 (TLR4) is an important mediator that activates bacterial inflammation through its signaling pathway. It binds lipopolysaccharide (LPS) in the presence of myeloid differentiation protein 2 (MD2) to dimerise the TLR4-MD2-LPS complex. The TLR4 mediated signaling pathway stimulates cytokine production in humans, initiating inflammatory responses.
View Article and Find Full Text PDFJ Inflamm Res
December 2024
Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, People's Republic of China.
Background And Purpose: Esophageal cancer-related gene-4 (ECRG4) participate in inflammation process and can interact with the innate immunity complex TLR4-MD2-CD14 on human granulocytes. In addition, ECRG4 participate in modulation of ion channel function and electrical activity of cardiomyocytes. However, the exact mechanism is unknown.
View Article and Find Full Text PDFFront Immunol
December 2024
Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile.
Introduction: The development of effective vaccines against is critical due to its significant impact on human and animal health. The objective of this study was to design and evaluate and a multivalent vaccine based on the immunogenic potential of three selected open reading frames (ORFs) of .
Methods: The designed construct, named S22, was analyzed to evaluate its physicochemical properties, antigenicity, allergenicity and toxicity.
Biomolecules
November 2024
Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, 3027 Thurston Bowles Bldg., CB 7178, Chapel Hill, NC 27599, USA.
The endogenous neurosteroid (3α,5α)-3-hydroxypregnan-20-one (3α,5α-THP) modulates inflammatory and neuroinflammatory signaling through toll-like receptors (TLRs) in human and mouse macrophages, human blood cells and alcohol-preferring (P) rat brains. Although it is recognized that 3α,5α-THP inhibits TLR4 activation by blocking interactions with MD2 and MyD88, the comprehensive molecular mechanisms remain to be elucidated. This study explores additional TLR4 activation sites, including TIRAP binding to MyD88, which is pivotal for MyD88 myddosome formation, as well as LPS interactions with the TLR4:MD2 complex.
View Article and Find Full Text PDFHum Immunol
November 2024
Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Pakistan. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!