The IntFOLD server based at the University of Reading has been a leading method over the past decade in providing free access to accurate prediction of protein structures and functions. In a post-AlphaFold2 world, accurate models of tertiary structures are widely available for even more protein targets, so there has been a refocus in the prediction community towards the accurate modelling of protein-ligand interactions as well as modelling quaternary structure assemblies. In this paper, we describe the latest improvements to IntFOLD, which maintains its competitive structure prediction performance by including the latest deep learning methods while also integrating accurate model quality estimates and 3D models of protein-ligand interactions. Furthermore, we also introduce our two new server methods: MultiFOLD for accurately modelling both tertiary and quaternary structures, with performance which has been independently verified to outperform the standard AlphaFold2 methods, and ModFOLDdock, which provides world-leading quality estimates for quaternary structure models. The IntFOLD7, MultiFOLD and ModFOLDdock servers are available at: https://www.reading.ac.uk/bioinf/.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10320135PMC
http://dx.doi.org/10.1093/nar/gkad297DOI Listing

Publication Analysis

Top Keywords

prediction protein
8
protein structures
8
structures functions
8
intfold7 multifold
8
multifold modfolddock
8
modfolddock servers
8
protein-ligand interactions
8
quaternary structure
8
quality estimates
8
prediction
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!