Employing "Red Flags" to Fight the Most Neglected Diseases: Nitroaromatic as Still Suitable Tools to Treat Human and Veterinary Parasitosis.

Curr Top Med Chem

Departamento de Ciências Farmacêuticas, Químicas e Farmacêuticas, Grupo de Pesquisas Químico-Farmacêuticas, Instituto de Ciências Ambientais, GPQFfesp, Universidade Federal de São Paulo, Diadema-SP, Brazil.

Published: July 2023

Nitroaromatic compounds have been used for treating parasitic diseases since the 1960s. Pharmacological alternatives to treat them are under observation. However, for the most neglected diseases, such as those caused by worms and less known protozoans, nitro compounds are still among the drugs of choice, despite their well-known collateral effects. In this review, we describe the chemistry and the uses of the still most employed nitroaromatic compounds for treating parasitosis caused by worms or lesser-known protozoans. We also describe their application as veterinary drugs. The most accepted mechanism of action seems to be the same, leading to collateral effects. For this reason, a special session was dedicated to discussing toxicity, carcinogenicity, and mutagenesis, as well as the most acceptable aspects of the known structure-activity/toxicity relationships involving nitroaromatic compounds. It employed the SciFindern search tool from the American Chemical Society in the search for the most relevant bibliography within the field, exploring keyword expressions such as "NITRO COMPOUNDS" and "BIOLOGICAL ACTIVITY" (within Abstracts or Keywords) and concepts related to parasites, pharmacology and toxicology. The results were classified according to the chemical classes of nitro compounds, being the most relevant studies regarding journal impact and interest of the described results chosen to be discussed. From the found literature, it is easy to notice that nitro compounds, especially the nitroaromatic ones, are still widely used in antiparasitic therapy, despite their toxicity. They also are the best starting point in the search for new active compounds.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1568026623666230427114840DOI Listing

Publication Analysis

Top Keywords

nitroaromatic compounds
12
nitro compounds
12
neglected diseases
8
compounds treating
8
caused worms
8
collateral effects
8
compounds
7
nitroaromatic
5
employing "red
4
"red flags"
4

Similar Publications

Hypoxia is a hallmark of the glioblastoma multiforme microenvironment and represents a promising therapeutic target for cancer treatment. Herein, we report nitroaromatic-based triazene prodrugs designed for selective activation by tumoral endogenous reductases and release of the cytotoxic methyldiazonium ion a self-immolative mechanism. While compounds bearing a 2-nitrofuran bioreductive group were more efficiently activated by nitroreductases, 4-nitrobenzyl prodrugs 1b, 1d and 1e elicited a more pronounced cytotoxic effect against LN-229 and U-87 MG glioblastoma cell lines under hypoxic conditions when compared to temozolomide (TMZ), the golden standard for glioblastoma treatment.

View Article and Find Full Text PDF

Base-Promoted [4 + 1 + 1] Multicomponent Tandem Cycloaddition of -Substituted Nitroarenes, Aldehydes, and Ammonium Salts To Access 2,4-Substituted Quinazoline Frameworks.

J Org Chem

January 2025

Key Laboratory of Biomass Green Chemical Conversion of Yunnan Provincial Education Department, Yunnan Key La-boratory of Chiral Functional Substance Research and Application, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650504, P. R. China.

We report a base-promoted, metal-free multicomponent tandem reaction, involving a [4 + 1 + 1] cycloaddition process between -substituted nitroarenes, aldehydes, and ammonium salts. Modifying the substituents on the nitroaromatic compounds effectively provides structurally diverse 2-substituted and 4-alkenylquinazolines with good to excellent yields (77%-90% and quinazoline 51 examples) and high tolerance for various inorganic ammonium salts (13 examples, such as NH·HO, NHCl, and NHHF). A new method for constructing 2,4-substituted quinazoline compounds with high selectivity from simple nitrogen source compounds was developed, and the reaction can be scaled up to a gram scale.

View Article and Find Full Text PDF

Au nanoclusters often demonstrate useful optical properties such as visible/near-infrared photoluminescence, in addition to remarkable thermodynamic stability owing to their superatomic behavior. The smallest of the 8e superatomic Au nanoclusters, Au, has limited applications due to its lack of luminescence and relatively low stability. In this work, we investigate the introduction of a single Pt dopant to the center of a halide- and triphenylphosphine-ligated Au nanocluster, affording a cluster with a proposed molecular formula PtAu(PPh)Br.

View Article and Find Full Text PDF

The light-absorbing chemical components of atmospheric organic aerosols are commonly referred to as Brown Carbon (BrC), reflecting the characteristic yellowish to brown appearance of aerosol. BrC is a highly complex mixture of organic compounds with diverse compositions and variable optical properties of its individual chromophores. BrC significantly influences the radiative budget of the climate and contributes to adverse air pollution effects such as reduced visibility and the presence of inhalable pollutants and irritants.

View Article and Find Full Text PDF

In this study, we present the synthesis of a silver nanocomposite by utilizing a β-cyclodextrin (βCD) polymer anchored onto the surface of magnetic g-CN (referred to as g-CN-FeO/βCD-Ag). The structure and composition of the g-CN-FeO/βCD-Ag nanocomposite were thoroughly characterized using various techniques, including FT-IR, FE-SEM-EDS, TEM, TGA, XRD, ICP, and VSM. This catalytic system exhibited excellent selectivity in reducing nitro groups, even in the presence of other reactive functional groups, resulting in high yields ranging from 85 to 98%.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!