Immune checkpoint inhibitor (ICI) therapy has become a powerful clinical strategy for treating melanoma. The relationship between somatic mutations and the clinical benefits of immunotherapy has been widely recognized. However, the gene-based predictive biomarkers are less stable due to the heterogeneity of cancer at the individual gene level. Recent studies have suggested that the accumulation of gene mutations in biological pathways may activate antitumor immune responses. Herein, a novel pathway mutation signature (PMS) was constructed to predict the survival and efficacy of ICI therapy. In a dataset of melanoma patients treated with anti-CTLA-4, we mapped the mutated genes into the pathways and then identified seven significant mutation pathways associated with survival and immunotherapy response, which were used to construct the PMS model. According to the PMS model, the patients in the PMS-high group showed better overall survival (hazard ratio (HR) = 0.37; log-rank test, p < 0.0001) and progression-free survival (HR = 0.52; log-rank test, p = 0.014) than those in the PMS-low group. The PMS-high patients also showed a significantly higher objective response rate to anti-CTLA-4 therapy than the PMS-low patients (Fisher's exact test, p = 0.0055), and the predictive power of the PMS model was superior to that of TMB. Finally, the prognostic and predictive value of the PMS model was validated in two independent validation sets. Our study demonstrated that the PMS model can be considered a potential biomarker to predict the clinical outcomes and response to anti-CTLA-4 therapy in melanoma patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10123336PMC
http://dx.doi.org/10.1016/j.csbj.2023.04.004DOI Listing

Publication Analysis

Top Keywords

mutation signature
8
ici therapy
8
pms model
8
pathway-based mutation
4
signature predict
4
predict clinical
4
clinical outcomes
4
outcomes response
4
response ctla-4
4
ctla-4 inhibitors
4

Similar Publications

BRAF-activated ARSI suppressed EREG-mediated ferroptosis to promote BRAF (mutant) papillary thyroid carcinoma progression and sorafenib resistance.

Int J Biol Sci

January 2025

Department of Thyroid and Hernia Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou City, Fujian Province 350001, China.

Papillary thyroid carcinoma (PTC) is the most common type of thyroid cancer, and patients with the BRAF mutation often exhibit aggressive tumor behavior. Here, we identified Arylsulfatase I (ARSI) as a gene whose expression was significantly upregulated in BRAF PTC and was associated with poor prognosis. High ARSI expression correlated with advanced disease stage, BRAF mutation, and worse overall survival in PTC patients.

View Article and Find Full Text PDF

Tetraspanins superfamily proteins have been shown to play an important role in several physiological processes and diseases such as cancer. Transmembrane polar residues of tetraspanins have an implication in regulating the process of cancer metastasis. Tetraspanin CD82 has been demonstrated to exert an anti-metastatic role while mutating polar residues in its transmembrane domains (TMDs) abrogates its metastasis inhibitory role.

View Article and Find Full Text PDF

T-lineage acute lymphoblastic leukemia (ALL) is an aggressive cancer comprising diverse subtypes that are challenging to stratify using conventional immunophenotyping. To gain insights into subset-specific therapeutic vulnerabilities, we performed an integrative multiomics analysis of bone marrow samples from newly diagnosed T cell ALL, early T cell precursor ALL, and T/myeloid mixed phenotype acute leukemia. Leveraging cellular indexing of transcriptomes and epitopes in conjunction with T cell receptor sequencing, we identified a subset of patient samples characterized by activation of inflammatory and stem gene programs.

View Article and Find Full Text PDF

Background: Esophageal squamous cell carcinoma (ESCC) remains a significant challenge in oncology due to its aggressive nature and heterogeneity. As one of the deadliest malignancies, ESCC research lags behind other cancer types. The balance between ubiquitination and deubiquitination processes plays a crucial role in cellular functions, with its disruption linked to various diseases, including cancer.

View Article and Find Full Text PDF

A Narrative Review of Molecular, Immunohistochemical and In-Situ Techniques in Dermatopathology.

Br J Biomed Sci

January 2025

St. John's Dermatopathology Laboratory, Synnovis Analytics, St. Thomas' Hospital, London, United Kingdom.

Skin disorders pose a significant health burden globally, affecting millions of individuals across diverse demographics. Advancements in molecular techniques have revolutionised our understanding of the underlying mechanisms of skin disorders, offering insights into their pathogenesis, diagnosis, and potential targeted treatment. Furthermore, the integration of molecular diagnostics into clinical practice has enhanced the accuracy of skin disorder diagnoses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!