This report documents the clinical and histological outcome of 3D-printed calcium phosphate blocks placed in two-stage procedures to successfully rehabilitate atrophic alveolar ridges. This approach yielded a functionally favorable result. Histological evaluations were performed after healing periods of 6 months and showed ongoing bone regeneration and sprouting capillaries.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10123314PMC
http://dx.doi.org/10.1002/ccr3.7171DOI Listing

Publication Analysis

Top Keywords

alveolar ridge
4
ridge augmentation
4
augmentation 3d-printed
4
3d-printed synthetic
4
synthetic bone
4
bone blocks
4
blocks clinical
4
clinical case
4
case series
4
series report
4

Similar Publications

Light-polymerizing reline materials offer improved chairside workability compared to conventional auto-polymerizing reline materials, addressing the partial denture (RPD) incompatibility caused by residual ridge resorption owing to long-term use. This study evaluates the fitting accuracy of relined materials by combining conventional fitting tests with three-dimensional (3D) measurements for detailed analysis. Light-polymerizing reline material (HikariLiner, Tokuyama, Tokyo, Japan, LP) and auto-polymerizing material (Rebase III, Tokuyama, AP) were used.

View Article and Find Full Text PDF

Transalveolar sinus floor elevation (TSFE) is a surgical technique for the placement of dental implants in patients with reduced height of the maxillary posterior alveolar bone. This study aims to demonstrate the clinical outcomes of TSFE using the minimal invasive sinus elevation (MISE) technique in partially and totally edentulous maxillary patients. This prospective clinical study followed STROBE guidelines.

View Article and Find Full Text PDF

Alveolar ridge resorption following tooth loss poses a significant challenge for successful dental implant placement. In cases of severe atrophy, bone augmentation is required to restore sufficient bone volume. This technical note outlines a detailed, stepwise surgical protocol for horizontal and vertical alveolar ridge augmentation using customized titanium mesh.

View Article and Find Full Text PDF

This review explores the recent advancements and ongoing challenges in regenerating alveolar bone, which is essential for dental implants and periodontal health. It examines traditional techniques like guided bone regeneration and bone grafting, alongside newer methods such as stem cell therapy, gene therapy, and 3D bioprinting. Each approach is considered for its strengths in supporting bone growth and integration, especially in cases where complex bone defects make regeneration difficult.

View Article and Find Full Text PDF

: Tooth extraction induces significant alveolar ridge dimensional changes and soft tissue modifications, often leading to challenges in implant placement or conventional prosthetic rehabilitation. Alveolar Ridge Preservation (ARP) strategies aim to mitigate post-extraction resorption of the alveolar ridge, enhancing both the quality and quantity of bone and soft tissue during healing. Hyaluronic acid (HYA) has emerged as a promising biological agent for ARP due to its osteoinductive, antimicrobial, and anti-inflammatory properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!