A transition from fossil- to bio-based hydrocarbon fuels is required to reduce greenhouse gas emissions; yet, traditional biomass cultivation for biofuel production competes with food production and impacts negatively on biodiversity. Recently, we reported a proof-of-principle study of a two-step photobiological-photochemical approach to kerosene biofuels in which a volatile hydrocarbon (isoprene) is produced by photosynthetic cyanobacteria, followed by its photochemical dimerization into C hydrocarbons. Both steps can utilize solar irradiation. Here, we report the triplet state (T)-sensitized photodimerization of a broader set of small 1,3-dienes to identify which structural features lead to rapid photodimerization. Neat 1,3-cyclohexadiene gave the highest yield (93%) after 24 h of irradiation at 365 nm, followed by isoprene (66%). The long triplet lifetime of 1,3-cyclohexadiene, which is two orders of magnitude longer than those of acyclic dienes, is key to its high photoreactivity and stem from its planar T state structure. In contrast, while isoprene is conformationally flexible, it has both photochemical and photobiological advantages, as it is the most reactive among the volatile 1,3-dienes and it can be produced by cyanobacteria. Finally, we explored the influence of solvent viscosity, diene concentration, and triplet sensitizer loading on the photodimerization, with a focus on conditions that are amenable when the dienes are produced photobiologically. Our findings should be useful for the further development of the two-step photobiological-photochemical approach to kerosene biofuels.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s43630-023-00418-0DOI Listing

Publication Analysis

Top Keywords

two-step photobiological-photochemical
8
photobiological-photochemical approach
8
approach kerosene
8
kerosene biofuels
8
combined photobiological-photochemical
4
photobiological-photochemical formation
4
formation kerosene-type
4
kerosene-type biofuels
4
biofuels small
4
small 13-diene
4

Similar Publications

A transition from fossil- to bio-based hydrocarbon fuels is required to reduce greenhouse gas emissions; yet, traditional biomass cultivation for biofuel production competes with food production and impacts negatively on biodiversity. Recently, we reported a proof-of-principle study of a two-step photobiological-photochemical approach to kerosene biofuels in which a volatile hydrocarbon (isoprene) is produced by photosynthetic cyanobacteria, followed by its photochemical dimerization into C hydrocarbons. Both steps can utilize solar irradiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!