A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Increased heat risk in wet climate induced by urban humid heat. | LitMetric

Cities are generally warmer than their adjacent rural land, a phenomenon known as the urban heat island (UHI). Often accompanying the UHI effect is another phenomenon called the urban dry island (UDI), whereby the humidity of urban land is lower than that of the surrounding rural land. The UHI exacerbates heat stress on urban residents, whereas the UDI may instead provide relief because the human body can cope with hot conditions better at lower humidity through perspiration. The relative balance between the UHI and the UDI-as measured by changes in the wet-bulb temperature (T)-is a key yet largely unknown determinant of human heat stress in urban climates. Here we show that T is reduced in cities in dry and moderately wet climates, where the UDI more than offsets the UHI, but increased in wet climates (summer precipitation of more than 570 millimetres). Our results arise from analysis of urban and rural weather station data across the world and calculations with an urban climate model. In wet climates, the urban daytime T is 0.17 ± 0.14 degrees Celsius (mean ± 1 standard deviation) higher than rural T in the summer, primarily because of a weaker dynamic mixing in urban air. This T increment is small, but because of the high background T in wet climates, it is enough to cause two to six extra dangerous heat-stress days per summer for urban residents under current climate conditions. The risk of extreme humid heat is projected to increase in the future, and these urban effects may further amplify the risk.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-023-05911-1DOI Listing

Publication Analysis

Top Keywords

wet climates
16
urban
12
humid heat
8
rural land
8
heat stress
8
stress urban
8
urban residents
8
wet
5
heat
5
uhi
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!