Tropical forests face increasing climate risk, yet our ability to predict their response to climate change is limited by poor understanding of their resistance to water stress. Although xylem embolism resistance thresholds (for example, [Formula: see text]) and hydraulic safety margins (for example, HSM) are important predictors of drought-induced mortality risk, little is known about how these vary across Earth's largest tropical forest. Here, we present a pan-Amazon, fully standardized hydraulic traits dataset and use it to assess regional variation in drought sensitivity and hydraulic trait ability to predict species distributions and long-term forest biomass accumulation. Parameters [Formula: see text] and HSM vary markedly across the Amazon and are related to average long-term rainfall characteristics. Both [Formula: see text] and HSM influence the biogeographical distribution of Amazon tree species. However, HSM was the only significant predictor of observed decadal-scale changes in forest biomass. Old-growth forests with wide HSM are gaining more biomass than are low HSM forests. We propose that this may be associated with a growth-mortality trade-off whereby trees in forests consisting of fast-growing species take greater hydraulic risks and face greater mortality risk. Moreover, in regions of more pronounced climatic change, we find evidence that forests are losing biomass, suggesting that species in these regions may be operating beyond their hydraulic limits. Continued climate change is likely to further reduce HSM in the Amazon, with strong implications for the Amazon carbon sink.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10156596PMC
http://dx.doi.org/10.1038/s41586-023-05971-3DOI Listing

Publication Analysis

Top Keywords

[formula text]
12
hydraulic safety
8
safety margins
8
ability predict
8
climate change
8
mortality risk
8
forest biomass
8
text] hsm
8
hsm
7
hydraulic
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!